From 1f47fbb4453a3960f8d7e5bc461c2b655a30e0b4 Mon Sep 17 00:00:00 2001 From: Blaise Date: Sun, 29 Dec 2024 21:13:18 +0100 Subject: [PATCH] improve encoders arch --- rvc/lib/algorithm/encoders.py | 86 ++++++++++++++--------------------- 1 file changed, 35 insertions(+), 51 deletions(-) diff --git a/rvc/lib/algorithm/encoders.py b/rvc/lib/algorithm/encoders.py index 5369ec78..ff27d039 100644 --- a/rvc/lib/algorithm/encoders.py +++ b/rvc/lib/algorithm/encoders.py @@ -33,21 +33,13 @@ def __init__( window_size: int = 10, ): super().__init__() + self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - self.drop = torch.nn.Dropout(p_dropout) - self.attn_layers = torch.nn.ModuleList() - self.norm_layers_1 = torch.nn.ModuleList() - self.ffn_layers = torch.nn.ModuleList() - self.norm_layers_2 = torch.nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append( + + self.attn_layers = torch.nn.ModuleList( + [ MultiHeadAttention( hidden_channels, hidden_channels, @@ -55,9 +47,14 @@ def __init__( p_dropout=p_dropout, window_size=window_size, ) - ) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append( + for _ in range(n_layers) + ] + ) + self.norm_layers_1 = torch.nn.ModuleList( + [LayerNorm(hidden_channels) for _ in range(n_layers)] + ) + self.ffn_layers = torch.nn.ModuleList( + [ FFN( hidden_channels, hidden_channels, @@ -65,8 +62,12 @@ def __init__( kernel_size, p_dropout=p_dropout, ) - ) - self.norm_layers_2.append(LayerNorm(hidden_channels)) + for _ in range(n_layers) + ] + ) + self.norm_layers_2 = torch.nn.ModuleList( + [LayerNorm(hidden_channels) for _ in range(n_layers)] + ) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) @@ -112,39 +113,30 @@ def __init__( embedding_dim: int, f0: bool = True, ): - super(TextEncoder, self).__init__() - self.out_channels = out_channels + super().__init__() self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = float(p_dropout) + self.out_channels = out_channels self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) - if f0: - self.emb_pitch = torch.nn.Embedding(256, hidden_channels) + self.emb_pitch = torch.nn.Embedding(256, hidden_channels) if f0 else None + self.encoder = Encoder( - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - float(p_dropout), + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout ) self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward( self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor ): - if pitch is None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.emb_phone(phone) + if pitch is not None and self.emb_pitch: + x += self.emb_pitch(pitch) + + x *= math.sqrt(self.hidden_channels) x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype) + x = x.transpose(1, -1) # [B, H, T] + + x_mask = sequence_mask(lengths, x.size(2)).unsqueeze(1).to(x.dtype) x = self.encoder(x, x_mask) stats = self.proj(x) * x_mask @@ -176,15 +168,8 @@ def __init__( n_layers: int, gin_channels: int = 0, ): - super(PosteriorEncoder, self).__init__() - self.in_channels = in_channels + super().__init__() self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WaveNet( hidden_channels, @@ -198,7 +183,7 @@ def __init__( def forward( self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None ): - x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) @@ -206,9 +191,8 @@ def forward( stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) - logs_exp = torch.exp(logs) - z = m + torch.randn_like(m) * logs_exp - z = z * x_mask + z = m + torch.randn_like(m) * torch.exp(logs) + z *= x_mask return z, m, logs, x_mask