Skip to content

HudsonHuang/tensorflow-template

Repository files navigation

Tensorflow-template

Linux CPU
Build Status

A template of tensorflow projects to maximize code reuse.

一个Tensorflow代码组织模板,目标是让大家少写代码。

Update 更新

  • 2018/07/14: Added experiment of AdamW and result.
    • Got slightly better result and get faster to convergence.
      • AdamW experiment on train
        adamW_experiment_on_train
      • AdamW experiment on test
        adamW_experiment_on_test

Introduction 引言

I am a beginner of Tensorflow, and found that there remains a far distance from the tensorflow official example to mature, community-recognized tensorflow code.     In order to promote exchange of model and modules, and to limit the frequently user-modified parts in a few files, the community gradually formed a set of unwritten standards. As a beginner, I try to discover these standards and start learning in an orderly manner.  

我是一个初学者,发现从tensorflow官网的例子,到成熟的,社区公认的tensorflow代码有不小的距离。
为了最大化模型复用程度,并把要频繁要自己写的部分都限定在单独的几个文件中,社区逐渐形成了一套不成文的标准。我作为初学者,尝试去发现这些标准并有条理地开始学习。

Key concepts 核心概念

  • module.py和model.py是子图和主图
    module.py and model.py is sub-graph and main-graph
  • dataset_prepare.py是数据准备器
    dataset_prepare.py is the data pre-processor
  • main是图的运行器(以指定方式,通过给图注入数据进行运行)
    main.py is the runner of the graph(feed the prepared data into graph in given manner)

Zen of Deep Learning codes 深度学习代码之禅

  • Let anyone run with one command
    要让复现的人一个命令就能跑通
  • Let anyone who want to improve the model focus on one file: model.py
    让想要改进的人只需要集中改一个文件:model.py
  • Decouples the model, data, and code (those that are independent of the model and the data)
    把模型,数据和代码(跟模型和数据无关的那些代码)解耦
  • Experimental steps should write on the .sh files for better debugging
    实验步骤应该放在.sh文件中里便于调试
  • Use less TensorFlow for plain style, to the contrary where performance is important
    要简洁的地方少用TensorFlow,需要性能的地方反之

Usage 用法

  • Default run 默认用法:
    Just run bash all_default.sh And wait everything done.
    只需运行bash all_default.sh即可

  • To write a new model:

    • Prepare dataset(download,extract,and simply pre-processing) with dataset_prepare.py
    • Define network in ./models
    • Define modules in ./module
    • Define params in hprams.py
    • Define placeholder to feed in main.py, as the input of algorithm
    • [optional]Define dataset preprocessing mapper function in preprocessing_util.py
    • [optional]Define experiment with a new .sh file in ./experiment

Sign 符号

  • x: input data
    x:输入数据
  • inputs: input of the model
    inputs:模型的输入
  • y: traget data (As label in supervised learning)
    y:目标数据(在监督学习中,就是label)
  • y_hat or y_: prediction of y
    y_hat或者y_:y的预测值

TODO 待办

  • Try tf.test.TestCase for tensor testing
  • Compatible with common styles like this
    兼容常见模型定义风格,比如这个

Give up 舍弃

  • Try tensorflow Estimator API to decouples Algorithm(net+loss+optim+...) and meta-Algorithm(experiment procedure: train, test,etc.)
    使用tensorflow Estimator API对main.py中的算法(net+loss+optim+...)和实验步骤(train, test,etc.)(实验步骤也可以作为元算法的组件,比如GAN)解耦

Any advices and contributions are welcome! Please click Here to give your comments.
欢迎各种建议和共建! 请点此处以提出您的建议。

About

A template of tensorflow projects to maximize code reuse.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published