-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgans.py
59 lines (40 loc) · 1.67 KB
/
gans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# DCGAN
import tensorflow as tf
from tensorflow.keras import layers
# the generator
def make_generator():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape = (100,))) # the encoder
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7,7,256)))
assert model.output_shape == (None, 7, 7, 256)
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 28, 28, 1)
return model
generator = make_generator()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
# the discriminator
def make_discriminator():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
discriminator = make_discriminator()
decision = discriminator(generated_image)
print (decision)