-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_CDMA_Plus.py
419 lines (347 loc) · 17.9 KB
/
train_CDMA_Plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import argparse
import os
from random import seed, shuffle
import random
import time
import sys
from PIL import Image
from test import count_label_unlabel
Image.MAX_IMAGE_PIXELS = None
join = os.path.join
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import monai
import torch.optim as optim
from dataloaders.dataset import get_train_loader, get_val_loader, get_val_WSI_loader
from monai.data import decollate_batch, PILReader
from monai.inferers import sliding_window_inference
from utils.Metrics import DiceMetric
from utils.losses import DiceLoss, KDLoss, entropy_loss
import logging
import csv
from networks.unet import UNet
from core.networks import MTNet_Plus
from tensorboardX import SummaryWriter
from medpy import metric
from torch import nn
def get_arguments():
parser = argparse.ArgumentParser(description="Digest Path 2019 Pytorch implementation")
parser.add_argument("--dataset_root", type=str,
default="", help="training images")
parser.add_argument("--batch_size", type=int,
default=16, help="Train batch size")
parser.add_argument("--labeled_bs", type=int, default=8)
parser.add_argument("--num_class", type=int,
default=2, help="Train class num")
parser.add_argument("--input_size", default=256)
parser.add_argument("--lr", type=float, default=2e-3)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--gpu", nargs="+", type=int)
parser.add_argument("--save_folder", default="model")
parser.add_argument("--num_workers", default=6)
parser.add_argument("--max_epoch", default=40, type=int)
parser.add_argument('--consistency', type=float, default=0.1, help='consistency')
parser.add_argument('--consistency_rampup', type=float, default=30.0, help='consistency_rampup')
parser.add_argument("--portion", default=5, type=int)
return parser.parse_args()
def get_deeplab(args, ema=False):
model = MTNet_Plus(model_name="resnet50", num_classes=args.num_class, use_group_norm=True)
model = torch.nn.DataParallel(model, device_ids=args.gpu).cuda()
param_groups = model.get_parameter_groups(None)
optimizer = optim.SGD(
[
{"params": param_groups[0], "lr": args.lr},
{"params": param_groups[1], "lr": 2 * args.lr},
{"params": param_groups[2], "lr": 10 * args.lr},
{"params": param_groups[3], "lr": 20 * args.lr},
],
# params=model.module.parameters(),
# lr=args.lr,
momentum=0.9,
weight_decay=args.weight_decay,
nesterov=True,
)
if ema:
for param in model.parameters():
param.detach_()
return model, optimizer
def update_ema_variables(model, ema_model):
# Use the true average until the exponential average is more correct
alpha = 0.99
# print('alpha:',alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def get_files(data_root):
new_file = []
img_names = os.listdir(data_root+'images')
for img_name in img_names:
image_root = data_root+'images/'+img_name
label_root = data_root+'labels/'+img_name[:-4]+'_mask.png'
new_sample = {'img':image_root, 'label':label_root}
new_file.append(new_sample)
return new_file
def sigmoid_rampup(current, rampup_length):
"""Exponential rampup from https://arxiv.org/abs/1610.02242"""
if rampup_length == 0:
return 1.0
else:
current = np.clip(current, 0.0, rampup_length)
phase = 1.0 - current / rampup_length
return float(np.exp(-5.0 * phase * phase))
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * sigmoid_rampup(epoch, args.consistency_rampup)
def train(model, ema_model, train_loader, optimizer, iter_num, epoch, labeled_names, unlabeled_names):
model.train()
kd_loss = KDLoss(T=10)
epoch_loss = 0
scaler = torch.cuda.amp.GradScaler()
for batch_data in train_loader:
batch_names = batch_data['img_meta_dict']['filename_or_obj']
labeled_names = labeled_names + batch_names[:args.labeled_bs]
unlabeled_names = unlabeled_names + batch_names[args.labeled_bs:]
inputs, labels = batch_data["img"].float().cuda(), batch_data["label"].cuda()
unlabeled_inputs = inputs[args.labeled_bs:]
# generate the classification model
logits_labels = torch.zeros((inputs.shape[0])).long().cuda()
for i in range(inputs.shape[0]):
seg_label = labels[i].cpu().numpy()
if np.max(seg_label) == 1:
logits_labels[i] = 1
logits_labels_onehot = F.one_hot(logits_labels, num_classes=2)
with torch.cuda.amp.autocast():
outputs1, outputs2, outputs3, logits, cams = model(inputs)
# print(outputs.shape, logits.shape)
outputs1_soft = torch.softmax(outputs1, dim=1)
outputs2_soft = torch.softmax(outputs2, dim=1)
outputs3_soft = torch.softmax(outputs3, dim=1)
outputs_soft_avg = (outputs1_soft+outputs2_soft+outputs3_soft)/3
outputs_avg = (outputs1+outputs2+outputs3)/3
logits_soft = torch.softmax(logits, dim=1)
# print(cams.shape)
loss_sup_seg = (0.5*dice_loss(outputs1_soft[:args.labeled_bs], labels[:args.labeled_bs])+0.5*F.cross_entropy(outputs1[:args.labeled_bs], labels[:args.labeled_bs,0,:,:].long()) + \
0.5*dice_loss(outputs2_soft[:args.labeled_bs], labels[:args.labeled_bs])+0.5*F.cross_entropy(outputs2[:args.labeled_bs], labels[:args.labeled_bs,0,:,:].long()) + \
0.5*dice_loss(outputs3_soft[:args.labeled_bs], labels[:args.labeled_bs])+0.5*F.cross_entropy(outputs3[:args.labeled_bs], labels[:args.labeled_bs,0,:,:].long()))/3
loss_cls = F.binary_cross_entropy_with_logits(logits[:args.labeled_bs], logits_labels_onehot[:args.labeled_bs].float())
if epoch < 15:
consistency_weight = 0
else:
consistency_weight = args.consistency
cross_loss1 = kd_loss(outputs1.permute(0, 2, 3, 1).reshape(-1, 2),outputs2.detach().permute(0, 2, 3, 1).reshape(-1, 2)) + \
kd_loss(outputs1.permute(0, 2, 3, 1).reshape(-1, 2),outputs3.detach().permute(0, 2, 3, 1).reshape(-1, 2))
cross_loss2 = kd_loss(outputs2.permute(0, 2, 3, 1).reshape(-1, 2),outputs1.detach().permute(0, 2, 3, 1).reshape(-1, 2)) + \
kd_loss(outputs2.permute(0, 2, 3, 1).reshape(-1, 2),outputs3.detach().permute(0, 2, 3, 1).reshape(-1, 2))
cross_loss3 = kd_loss(outputs3.permute(0, 2, 3, 1).reshape(-1, 2),outputs1.detach().permute(0, 2, 3, 1).reshape(-1, 2)) + \
kd_loss(outputs3.permute(0, 2, 3, 1).reshape(-1, 2),outputs2.detach().permute(0, 2, 3, 1).reshape(-1, 2))
consistency_loss_cross = (cross_loss1+cross_loss2+cross_loss3)/3
consistency_task = torch.mean((outputs_soft_avg-cams)**2)
"""entropy minimization for segmentation branch, or classification branch"""
en_loss = entropy_loss(outputs_soft_avg, C=2)
consistency_loss = consistency_loss_cross + consistency_task + en_loss
loss_sup = loss_sup_seg + 0.1*loss_cls
loss = loss_sup + consistency_weight * consistency_loss
update_ema_variables(model, ema_model)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
for param_group in optimizer.param_groups:
lr_ = param_group['lr']
epoch_loss += loss.item()
print('train_loss:', epoch_loss/len(train_loader), 'multi-task consistency_loss:', consistency_weight * consistency_loss.item(), \
'cross consistency loss:', consistency_loss_cross.item(), 'task loss:', consistency_task.item(), 'entropy loss:', en_loss.item())
return epoch_loss/len(train_loader), lr_, labeled_names, unlabeled_names
def validate(model, val_loader, save_img=False, save_heatmap=False):
acc, count = 0, 0
model.eval()
dice = 0
dice_count = 0
# dice_metric = DiceMetric(num_class=args.num_class)
with torch.no_grad():
for val_data in val_loader:
val_images, val_labels = val_data["img"].cuda(), val_data["label"].cuda()
# generate the classification model
logits_labels = torch.zeros((val_labels.shape[0],))
for i in range(val_labels.shape[0]):
seg_label = val_labels[i].cpu().numpy()
if np.max(seg_label) == 1:
logits_labels[i] = 1
val_outputs, val_outputs2, val_outputs3, val_logits, val_cams = model(val_images)
# softmax
# val_outputs_soft = torch.softmax(val_outputs, dim=1)
# no softmax
val_outputs = F.relu(val_outputs)
val_outputs_soft = val_outputs / (F.adaptive_max_pool2d(val_outputs, 1) + 1e-5)
val_outputs2 = F.relu(val_outputs2)
val_outputs2_soft = val_outputs2 / (F.adaptive_max_pool2d(val_outputs2, 1) + 1e-5)
val_outputs3 = F.relu(val_outputs3)
val_outputs3_soft = val_outputs3 / (F.adaptive_max_pool2d(val_outputs3, 1) + 1e-5)
logits_labels = logits_labels.numpy()
val_logits = val_logits.cpu().numpy()
val_logits = val_logits.argmax(1)
acc += np.sum(logits_labels == val_logits)
count += val_logits.shape[0]
for i in range(len(logits_labels)):
if logits_labels[i] == 1:
# val_outputs = (torch.softmax(val_outputs, dim=1)+val_cams)/2
val_output_i = val_outputs[i].argmax(0).cpu().numpy().astype(np.uint8)
val_label_i = val_labels[i].cpu().numpy().astype(np.uint8)
# print(val_output_i.max(), val_label_i.max())
dice += metric.dc(val_output_i, val_label_i)
# print(dice)
dice_count += 1
# dice_metric.add_batch(val_outputs[i], val_labels[:, 0, :, :])
if save_img:
batch_names = val_data['img_meta_dict']['filename_or_obj']
sample_name = batch_names[i]
sample_name = sample_name.split('/')[-1]
val_numpy = val_outputs_soft[i].permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy[1]
val_pred = np.array(val_pred*255, dtype=np.uint8)
Image.fromarray(val_pred).save('test_results_patch_hard/branch1/'+sample_name[:-4]+'.png')
val_numpy = val_outputs2_soft[i].permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy[1]
val_pred = np.array(val_pred*255, dtype=np.uint8)
Image.fromarray(val_pred).save('test_results_patch_hard/branch2/'+sample_name[:-4]+'.png')
val_numpy = val_outputs3_soft[i].permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy[1]
val_pred = np.array(val_pred*255, dtype=np.uint8)
Image.fromarray(val_pred).save('test_results_patch_hard/branch3/'+sample_name[:-4]+'.png')
val_numpy = ((val_outputs_soft[i]+val_outputs2_soft[i]+val_outputs3_soft[i])/3).permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy[1]
val_pred = np.array(val_pred*255, dtype=np.uint8)
Image.fromarray(val_pred).save('test_results_patch/avg/'+sample_name[:-4]+'.png')
if save_heatmap:
batch_names = val_data['img_meta_dict']['filename_or_obj']
sample_name = batch_names[i]
sample_name = sample_name.split('/')[-1]
val_numpy = val_cams[i].permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy[1]
# print(np.max(val_pred), np.min(val_pred))
val_pred = np.array(val_pred*255, dtype=np.uint8)
Image.fromarray(val_pred).save('test_results_patch/branch1_cams/'+sample_name[:-4]+'.png')
print(dice/(dice_count+1e-5), acc/count)
return dice/(dice_count+1e-5)*100
def validate_WSI(model, val_loader, save_folder):
model.eval()
dice, count = 0, 0
dice_list = []
with torch.no_grad():
for val_data in val_loader:
val_images, val_labels = val_data["img"].cuda(), val_data["label"].cuda()
val_outputs,val_outputs2,val_outputs3,val_cams = sliding_window_inference(val_images, [args.input_size, args.input_size], 4, model, overlap=0.25)
val_label = val_labels[0].cpu().numpy().astype(np.uint8)
# val_outputs = (val_outputs+val_outputs2+val_outputs3)/3
# for segmentation, use threshold
val_outputs_soft = torch.softmax(val_outputs, dim=1)
val_pred = val_outputs[0].argmax(0).cpu().numpy().astype(np.uint8)
dice_cur = metric.dc(val_pred, val_label)
dice += dice_cur
dice_list.append(dice_cur)
count += 1
# save pics
batch_names = val_data['img_meta_dict']['filename_or_obj']
sample_name = batch_names[0]
sample_name = sample_name.split('/')[-1]
val_numpy = val_outputs[0].permute(0, 2, 1).cpu().numpy()
val_pred = val_numpy.argmax(0)
val_pred = np.array(val_pred*255, dtype=np.uint8)
if not os.path.exists(save_folder):
os.mkdir(save_folder)
Image.fromarray(val_pred).save(save_folder+sample_name[:-4]+'.png')
print(dice/count)
return dice/count*100
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if __name__ == '__main__':
args = get_arguments()
portion = args.portion
l = logging.getLogger(__name__)
fileHandler = logging.FileHandler(f'log/cdma_plus_{portion}.log', mode='a')
l.setLevel(logging.INFO)
l.addHandler(fileHandler)
# set rand seed
setup_seed(1)
labeled_data_root = f'/mnt/data2/lanfz/datasets/digestpath2019/tissue-train-{portion}-patch/'
all_data_root = '/mnt/data2/lanfz/datasets/digestpath2019/tissue-train-100-patch/'
val_data_root = '/mnt/data2/lanfz/datasets/digestpath2019/tissue-val-patch/'
test_data_root = '/mnt/data2/lanfz/datasets/digestpath2019/tissue-test-patch/'
labeled_files = get_files(labeled_data_root)
all_data_files = get_files(all_data_root)
np.random.shuffle(labeled_files)
labeled_num = len(labeled_files)
all_data_num = len(all_data_files)
labeled_data_img_names = []
for i in range(labeled_num):
img_path = labeled_files[i]['img']
img_name = img_path.split('/')
img_name = img_name[-1]
labeled_data_img_names.append(img_name)
labeled_idxs = []
unlabeled_idxs = []
for i in range(all_data_num):
img_path = all_data_files[i]['img']
img_name = img_path.split('/')
img_name = img_name[-1]
if img_name in labeled_data_img_names:
labeled_idxs.append(i)
else:
unlabeled_idxs.append(i)
l.info(f'labeled:{labeled_num},unlabeled:{all_data_num-labeled_num}')
print(f'labeled:{labeled_num},unlabeled:{all_data_num-labeled_num}')
val_files = get_files(val_data_root)
test_files = get_files(test_data_root)
l.info(f'training files:{all_data_num}, valid files:{len(val_files)}')
print(f'training files:{all_data_num}, valid files:{len(val_files)}')
train_loader = get_train_loader(args, all_data_files, labeled_idxs, unlabeled_idxs)
val_loader = get_val_loader(args, val_files)
test_loader = get_val_loader(args, test_files)
dice_loss = DiceLoss(n_classes=args.num_class)
max_epoch = 150
iter_num = 0
print(f'max_epoch:{max_epoch}')
l.info(f'max_epoch:{max_epoch}')
max_dice = 0
# set gpu
torch.cuda.set_device(args.gpu[0])
# get model
model, optimizer = get_deeplab(args)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[max_epoch//4, max_epoch//2, max_epoch*3//4], gamma=0.5)
model_ema, _ = get_deeplab(args, ema=True)
labeled_names = []
unlabeled_names = []
for epoch in range(max_epoch):
t0 = time.time()
train_loss, cur_lr, labeled_names, unlabeled_names = train(model, model_ema, train_loader, optimizer, iter_num, epoch, labeled_names, unlabeled_names)
t1 = time.time()
val_dice = validate(model, val_loader)
t2 = time.time()
scheduler.step()
iter_num = (epoch+1)*len(train_loader)
print("training/validation time: {0:.2f}s/{1:.2f}s".format(t1 - t0, t2 - t1))
if val_dice > max_dice:
max_dice = val_dice
best_epoch = epoch+1
print(f'cur_best dice:{max_dice}')
torch.save(model.state_dict(), f'model/cdma_plus_{portion}_best.pth')
# # test
print('------------test-------------')
save_folder = f'test_results/{portion}_multi_task_lanfz/'
test_WSI_data_root = '/mnt/data2/lanfz/datasets/digestpath2019/tissue-test/'
test_WSI_files = get_files(test_WSI_data_root)
test_WSI_loader = get_val_WSI_loader(test_WSI_files, args)
# test in WSI
test_model = MTNet_Plus(model_name="resnet50", num_classes=args.num_class, use_group_norm=True, train=False).cuda()
test_model.eval()
ckpt = torch.load(f'model/cmda_plus_{portion}_best.pth', map_location="cpu")
test_model.load_state_dict(ckpt, strict=True)
validate(test_model, test_loader, save_img=True, save_heatmap=True)
val_dice = validate_WSI(test_model, test_WSI_loader, save_folder)
l.info('test dice {0:.4f}'.format(val_dice))