-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_explainer.py
290 lines (243 loc) · 14.2 KB
/
main_explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import sys
from typing import Tuple, Optional
from torch import Tensor
from sklearn import metrics
import torch.nn.functional as F
from sklearn.metrics import f1_score
from sklearn.model_selection import StratifiedKFold
from torch_geometric.data import DataLoader
import nni
import os
import random
from models.build_model import build_model
from explainer import GNNExplainer
from utils.load_node_labels import load_txt, load_cluster_info_from_txt
from utils.utils import seed_everything, archive_files, mkdirs_if_needed
from utils.dataloader_utils import *
from utils.modified_args import ModifiedArgs
from typing import List
from utils.diff_matrix import DiffMatrix
class MainExplainer:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train_and_evaluate(self, model, train_loader, test_loader, optimizer, device, args, is_tuning):
model.train()
accs, aucs, macros = [], [], []
epoch_num = self.get_epoch_num(args, is_tuning)
for i in range(epoch_num):
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
loss_all += loss.item()
epoch_loss = loss_all / len(train_loader.dataset)
train_micro, train_auc, train_macro = self.eval(model, train_loader)
title = "Tuning Train" if is_tuning else "Initial Train"
print(f'({title}) | Epoch={i:03d}, loss={epoch_loss:.4f}, \n'
f'train_micro={(train_micro * 100):.2f}, train_macro={(train_macro * 100):.2f}, '
f'train_auc={(train_auc * 100):.2f}')
if (i + 1) % args.test_interval == 0:
test_micro, test_auc, test_macro = self.eval(model, test_loader)
accs.append(test_micro)
aucs.append(test_auc)
macros.append(test_macro)
text = f'({title} Epoch {i}), test_micro={(test_micro * 100):.2f}, ' \
f'test_macro={(test_macro * 100):.2f}, test_auc={(test_auc * 100):.2f}\n'
print(text)
with open(args.save_result, "a") as f:
f.writelines(text)
if args.enable_nni:
nni.report_intermediate_result(train_auc)
accs, aucs, macros = numpy.sort(numpy.array(accs)), numpy.sort(numpy.array(aucs)), \
numpy.sort(numpy.array(macros))
return accs.mean(), aucs.mean(), macros.mean()
def get_epoch_num(self, args, is_tuning):
if is_tuning:
epoch_num = args.tuning_epochs
else:
epoch_num = args.initial_epochs
return epoch_num
@torch.no_grad()
def eval(self, model, loader, test_loader: Optional[DataLoader] = None) -> (float, float):
model.eval()
preds, trues, preds_prob = [], [], []
for data in loader:
data = data.to(self.device)
c = model(data)
pred = c.max(dim=1)[1]
preds += pred.detach().cpu().tolist()
preds_prob += torch.exp(c)[:, 1].detach().cpu().tolist()
trues += data.y.detach().cpu().tolist()
fpr, tpr, _ = metrics.roc_curve(trues, preds_prob)
train_auc = metrics.auc(fpr, tpr)
if numpy.isnan(train_auc):
train_auc = 0.5
train_micro = f1_score(trues, preds, average='micro')
train_macro = f1_score(trues, preds, average='macro', labels=[0, 1])
if test_loader is not None:
test_micro, test_auc, test_macro = self.eval(model, test_loader)
return train_micro, train_auc, train_macro, test_micro, test_auc, test_macro
else:
return train_micro, train_auc, train_macro
def explain(self, model, train_set, test_set, node_labels, node_atts, optimizer, device, args):
# the dataloader to train/test the explainer mask must be of batch size 1
train_iterator = DataLoader(train_set, batch_size=1, shuffle=False)
test_iterator = DataLoader(test_set, batch_size=1, shuffle=False)
# train explainer mask
explainer = GNNExplainer(model, epochs=args.explainer_epochs, return_type='log_prob', labels=node_labels,
remove_loss=[args.remove_loss])
node_feat_mask, edge_mask = explainer.explainer_train(train_iterator, device, args)
# Tuning: used explainer masked loader to train the initial model again
masked_train_loader = explainer.mask_dataloader(node_feat_mask, edge_mask, train_iterator, args, node_atts,
device, batch_size=args.train_batch_size)
masked_test_loader = explainer.mask_dataloader(node_feat_mask, edge_mask, test_iterator, args, node_atts,
device, batch_size=args.test_batch_size)
self.train_and_evaluate(explainer.model, masked_train_loader, masked_test_loader, optimizer,
device, args, is_tuning=True)
explainer_test_micro, explainer_test_auc, explainer_test_macro = self.eval(explainer.model,
masked_test_loader)
print(f'(Tuning Performance Last Epoch) | explainer_test_micro={(explainer_test_micro * 100):.2f}, '
f'explainer_test_macro={(explainer_test_macro * 100):.2f}, '
f'explainer_test_auc={(explainer_test_auc * 100):.2f}')
return explainer_test_micro, explainer_test_auc, explainer_test_macro
def dropout_samples(self, train_set: List[Data], train_y: Tensor, dropout_rate) -> Tuple[List[Data], Tensor]:
# randomly shuffle the list of data and train_y together
indices = torch.randperm(len(train_set))
train_set = [train_set[i] for i in indices]
train_y = train_y[indices]
# dropout the data according to the dropout rate
dropout_num = int(dropout_rate * len(train_set))
train_set = train_set[dropout_num:]
train_y = train_y[dropout_num:]
return train_set, train_y
def main(self):
mkdirs_if_needed(["fig/", "fig/archive/", "modularity/", "modularity/archive/"])
archive_files("fig/", "fig/archive/")
archive_files("modularity/", "modularity/archive/")
parser = argparse.ArgumentParser()
parser.add_argument('--hidden_dim', type=int, default=16)
parser.add_argument('--n_GNN_layers', type=int, default=2)
parser.add_argument('--n_MLP_layers', type=int, default=1)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--num_heads', type=int, default=1)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--initial_epochs', type=int, default=100)
parser.add_argument('--explainer_epochs', type=int, default=100)
parser.add_argument('--tuning_epochs', type=int, default=100)
parser.add_argument('--test_interval', type=int, default=20)
parser.add_argument('--seed', type=int, default=112078)
parser.add_argument('--save_result', type=str, default='test')
parser.add_argument('--node_features', type=str,
choices=['identity', 'LDP', 'node2vec', 'adj', 'diff_matrix'],
# LDP is degree profile and adj is edge profile
default='adj')
parser.add_argument('--pooling', type=str,
choices=['sum', 'concat', 'mean'],
default='sum')
parser.add_argument('--explain', action='store_true')
parser.add_argument('--modality', type=str, default='dti')
parser.add_argument('--dataset_name', type=str, default="BP")
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--test_batch_size', type=int, default=16)
parser.add_argument('--k_fold_splits', type=int, default=7)
parser.add_argument('--gat_hidden_dim', type=int, default=8)
parser.add_argument('--enable_nni', action='store_true')
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--edge_emb_dim', type=int, default=1)
parser.add_argument('--no_vis', action='store_true')
parser.add_argument('--top_k', type=int, default=0)
parser.add_argument('--shallow', type=str, default='None')
parser.add_argument('--num_component', type=int, default=8)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--rank', type=int, default=3)
parser.add_argument('--rank_dim0', type=int, default=3)
parser.add_argument('--rank_dim1', type=int, default=4)
parser.add_argument('--rank_dim2', type=int, default=5)
parser.add_argument('--dropout_rate', type=float, default=0.0)
parser.add_argument('--remove_loss', type=str,
choices=['None', 'sparsity', 'entropy', 'laplacian', 'truth'],
default='None')
parser.add_argument('--interpolation', action='store_true')
parser.add_argument('--gaussian', action='store_true')
parser.add_argument('--log_result', action='store_true')
parser.add_argument('--use_partial', action='store_true')
args = parser.parse_args()
if args.enable_nni:
args = ModifiedArgs(args, nni.get_next_parameter())
if os.path.exists(args.save_result):
os.remove(args.save_result)
# load datasets
dataset_mapping = dict(HIV="datasets/New_Node_AAL90.txt",
BP="datasets/New_Node_Brodmann82.txt",
PPMI="datasets/New_Node_PPMI.txt",
PPMI_balanced="datasets/New_Node_PPMI.txt")
txt_name = dataset_mapping.get(args.dataset_name, None)
node_labels = load_cluster_info_from_txt(txt_name)
dataset, bin_edges, y = load_data_singleview(args, 'datasets', args.modality, node_labels)
node_atts = load_txt(txt_name)
num_features = dataset[0].x.shape[1]
# init model
seed_everything(random.randint(1, 1000000)) # use random seed for each run
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
accs, aucs, macros, exp_accs, exp_aucs, exp_macros = [], [], [], [], [], []
for _ in range(args.repeat):
seed_everything(random.randint(1, 1000000)) # use random seed for each run
skf = StratifiedKFold(n_splits=args.k_fold_splits, shuffle=True)
for train_index, test_index in skf.split(dataset, y):
model = build_model(args, device, num_features)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
train_binary, test_binary = numpy.zeros(len(dataset), dtype=int), numpy.zeros(len(dataset), dtype=int)
train_binary[train_index] = 1
test_binary[test_index] = 1
train_set: MaskableList[Data]
train_set, test_set = dataset[train_binary], dataset[test_binary]
train_y, test_y = y[train_index], y[test_index]
if args.dropout_rate > 0:
train_set, train_y = self.dropout_samples(train_set, train_y, args.dropout_rate)
if args.shallow == 'diff_matrix':
diff_matrix = DiffMatrix(0.2).compute(train_set, y)
_, train_set = diff_matrix.apply(train_set, args, train_y)
_, test_set = diff_matrix.apply(test_set, args, test_y)
train_loader = DataLoader(train_set, batch_size=args.train_batch_size, shuffle=False)
test_loader = DataLoader(test_set, batch_size=args.test_batch_size, shuffle=False)
# train
test_micro, test_auc, test_macro = self.train_and_evaluate(model, train_loader, test_loader,
optimizer, device, args, is_tuning=False)
print(f'(Initial Performance Last Epoch) | test_micro={(test_micro * 100):.2f}, '
f'test_macro={(test_macro * 100):.2f}, test_auc={(test_auc * 100):.2f}')
accs.append(test_micro)
aucs.append(test_auc)
macros.append(test_macro)
if args.explain:
explainer_test_micro, explainer_test_auc, explainer_test_macro = \
self.explain(model, train_set, test_set, node_labels, node_atts, optimizer, device, args)
exp_accs.append(explainer_test_micro)
exp_aucs.append(explainer_test_auc)
exp_macros.append(explainer_test_macro)
result_str = f'(K Fold Initial)| avg_acc={(numpy.mean(accs) * 100):.2f} +- {(numpy.std(accs) * 100): .2f}, ' \
f'avg_auc={(numpy.mean(aucs) * 100):.2f} +- {numpy.std(aucs) * 100:.2f}, ' \
f'avg_macro={(numpy.mean(macros) * 100):.2f} +- {numpy.std(macros) * 100:.2f}\n'
print(result_str)
if args.explain:
result_str += f'(K Fold Tuning) | avg_acc={(numpy.mean(exp_accs) * 100):.2f} +- {(numpy.std(exp_accs) * 100): .2f}, ' \
f'avg_auc={(numpy.mean(exp_aucs) * 100):.2f} +- {numpy.std(exp_aucs) * 100:.2f}' \
f'avg_macro={(numpy.mean(exp_macros) * 100):.2f} +- {numpy.std(exp_macros) * 100:.2f}'
print(result_str)
with open('result.log', 'a') as f:
# write all input arguments to f
input_arguments: List[str] = sys.argv
f.write(f'{input_arguments}\n')
f.write(result_str + '\n')
if args.enable_nni:
nni.report_final_result(numpy.mean(aucs))
def count_degree(data: numpy.ndarray): # data: (sample, node, node)
count = numpy.zeros((data.shape[1], data.shape[1]))
for i in range(data.shape[1]):
count[i, :] = numpy.sum(data[:, i, :] != 0, axis=0)
if __name__ == '__main__':
MainExplainer().main()