-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_torch.py
75 lines (64 loc) · 2.35 KB
/
train_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
os.environ["XRT_TPU_CONFIG"]="localservice;0;localhost:51011"
from transformers import HfArgumentParser, set_seed
from utils.collator import SequenceClassificationCollator
from utils.arguments import TrainingArguments, DataTrainingArguments, ModelArguments
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from typing import List, Dict, Any
from datasets import disable_caching, load_dataset
from accelerate import Accelerator
from tqdm.auto import tqdm
from accelerate.logging import get_logger
from pprint import pprint
from transformers import HfArgumentParser
from task import nsmc, director, ctrl, klue, dexpert, sequence_classification, gpt, \
detox, koalpaca, reward
TASKS = {
"nsmc": nsmc.NSMCTask,
"director": director.DirectorTask,
"ctrl": ctrl.CTRLTask,
"klue-ynat": klue.YNATTask,
"klue-sts": klue.STSBinaryTask,
# "nia-summ": summarization.NiaSummarizationTask,
# "nia-dialog": dialog.NiaDialogTask,
# "nia-dialog-v2": dialog.NiaDialogTaskV2,
"dexpert-toxic": dexpert.ToxicDExpertTask,
"dexpert-non-toxic": dexpert.NonToxicDExpertTask,
"news-category-top10": sequence_classification.NewsCategoryClassificationTask,
"toxic-token-classification": detox.ToxicSpanDetectionTask,
"toxic-sequence-classification": detox.ToxicSequenceClassificationTask,
"gpt": gpt.GPTTask,
"gpt-finetuning": gpt.CausalFineTuningTask,
"gpt-lyrics": gpt.LyricsGPTTask,
"koalpaca": koalpaca.KoAlpacaTask,
"gorani": gpt.GoraniTask,
"reward": reward.RewardTask,
"seq2seq-rank-reward": reward.Seq2SeqRankRewardTask,
}
def main():
parser = HfArgumentParser(
(TrainingArguments, DataTrainingArguments, ModelArguments)
)
training_args, data_args, model_args = parser.parse_args_into_dataclasses()
args = parser.parse_args()
set_seed(args.seed)
os.environ["WANDB_NAME"] = args.run_name
accelerator = Accelerator(log_with="wandb")
accelerator.init_trackers(
args.project,
config=args
)
task = TASKS[args.task](accelerator, training_args, data_args, model_args)
task.setup()
if args.do_train:
task.train()
elif args.do_eval:
task.evaluate(0, 0)
accelerator.end_training()
if __name__ == "__main__":
main()