-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_classifier.py
251 lines (210 loc) · 7.31 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Pytorch Training using huggingface accelerate
from transformers import (
HfArgumentParser,
DataCollatorForSeq2Seq,
DataCollatorWithPadding,
set_seed
)
from utils.collator import SequenceClassificationCollator
from utils.arguments import TrainingArguments, DataTrainingArguments, ModelArguments
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tokenizers import Tokenizer
from typing import List, Dict, Any
from omegaconf import OmegaConf
import fire
from datasets import disable_caching, load_dataset
from accelerate import Accelerator
from tqdm.auto import tqdm
from accelerate.logging import get_logger
import os
import evaluate
from pprint import pprint
eval_accuracy = evaluate.load("accuracy")
def train(
args, accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader
):
global_step = 0
optimizer_step = 0
for epoch in tqdm(
range(args.num_train_epochs),
position=0,
disable=not accelerator.is_local_main_process,
):
model.train()
epoch_tqdm = tqdm(
train_dataloader,
disable=not accelerator.is_local_main_process,
position=1,
leave=False,
)
for step, batch in enumerate(epoch_tqdm):
loss = model(**batch).loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if (global_step + 1) % args.gradient_accumulation_steps == 0:
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if (
accelerator.is_main_process
and optimizer_step % args.logging_steps == 0
):
metrics = {
"optimizer_step": optimizer_step,
"train/learning_rate": lr_scheduler.scheduler._last_lr[0],
"train/loss": loss.item() * args.gradient_accumulation_steps,
}
accelerator.log(metrics)
optimizer_step += 1
epoch_tqdm.set_description(
f"loss: {loss.item() * args.gradient_accumulation_steps}"
)
if (
args.eval_strategy == 'steps'
and optimizer_step % args.eval_steps == 0
):
evaluate(accelerator, model, eval_dataloader)
global_step += 1
if args.save_strategy == "epoch":
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{args.output_dir}/{args.run_name}/epoch-{epoch + 1}"
)
accelerator.wait_for_everyone()
if eval_dataloader is not None and args.eval_strategy == 'epoch':
evaluate(accelerator, model, eval_dataloader)
def collate_dictlist(dl):
from collections import defaultdict
out = defaultdict(list)
for d in dl:
for k, v in d.items():
out[k].append(v)
return out
@torch.no_grad()
def evaluate(accelerator, model, dataloader):
model.eval()
epoch_tqdm = tqdm(
dataloader,
disable=not accelerator.is_local_main_process,
position=1,
leave=False,
)
step_outputs = []
for step, batch in enumerate(epoch_tqdm):
out = model(**batch)
loss, logits = out.loss, out.logits
step_outputs.append({
'loss': loss,
'logits': logits,
'labels': batch['labels']
})
eval_outputs = accelerator.gather_for_metrics(step_outputs)
# eval_mean_loss = all_losses.mean().item()
if accelerator.is_local_main_process:
eval_outputs = collate_dictlist(eval_outputs)
preds = torch.stack(eval_outputs['logits']).view(-1, 2).argmax(-1)
labels = torch.stack(eval_outputs['labels']).view(-1)
eval_mean_loss = torch.stack(eval_outputs['loss']).mean().item()
eval_results = {
"eval/loss": eval_mean_loss,
"eval/accuracy": eval_accuracy.compute(predictions=preds, references=labels)['accuracy']
}
pprint("evaluation result")
pprint(eval_results)
accelerator.log(eval_results)
model.train()
def main():
parser = HfArgumentParser(
(TrainingArguments, DataTrainingArguments, ModelArguments)
)
training_args, data_args, model_args = parser.parse_args_into_dataclasses()
args = parser.parse_args()
set_seed(args.seed)
os.environ["WANDB_NAME"] = args.run_name
accelerator = Accelerator(log_with="wandb")
accelerator.init_trackers(
args.project,
config=args,
)
dataset = load_dataset(args.dataset_name, args.dataset_config_name)
model = model_args.get_model()
tokenizer = model_args.get_tokenizer()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def encode_data(x):
ids = tokenizer.encode(x["document"], truncation=True, max_length=args.max_sequence_length)
out = {"input_ids": ids, "attention_mask": [1] * len(ids)}
out["label"] = x["label"]
return out
with accelerator.local_main_process_first():
mapped_dataset = dataset.map(
encode_data, remove_columns=dataset["train"].column_names
)
collator = SequenceClassificationCollator(
tokenizer=tokenizer,
max_length=args.max_sequence_length,
pad_to_multiple_of=8,
padding="max_length",
return_tensors="pt",
)
train_dataloader = DataLoader(
mapped_dataset["train"],
batch_size=args.per_device_train_batch_size,
shuffle=True,
drop_last=True,
collate_fn=collator,
)
if args.do_eval:
eval_dataloader = DataLoader(
mapped_dataset["test"],
batch_size=args.per_device_eval_batch_size,
shuffle=False,
drop_last=False,
collate_fn=collator,
)
else:
eval_dataloader = None
steps_per_epoch = len(dataset["train"]) // (
args.per_device_train_batch_size
* args.gradient_accumulation_steps
)
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.learning_rate,
steps_per_epoch=steps_per_epoch,
epochs=args.num_train_epochs,
anneal_strategy="linear",
pct_start=0.01,
final_div_factor=10,
)
(
model,
optimizer,
train_dataloader,
lr_scheduler,
eval_dataloader,
) = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler, eval_dataloader
)
accelerator.register_for_checkpointing(lr_scheduler)
if args.do_train:
train(
args,
accelerator,
model,
optimizer,
lr_scheduler,
train_dataloader,
eval_dataloader,
)
elif args.do_eval:
evaluate(accelerator, model, eval_dataloader)
accelerator.end_training()