-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathBMI trajectories VI V2 BMI response
82 lines (69 loc) · 3.04 KB
/
BMI trajectories VI V2 BMI response
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
library(lme4)
SchoolCode<-as.factor(SchoolCode)
ChildID<-as.factor(ChildID)
#VARIABLE INTERCEPTS MODEL
VI1<- lmer(BMI~ageattest*Gender*Ethnicity+PostcodeDecile+AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
summary(VI1)
#model converges
Ethnicity2<-Ethnicity
levels(Ethnicity2)
levels(Ethnicity2)[1:2]<-"White"
VI2<- lmer(BMI~ ageattest*Gender*Ethnicity2*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI1, VI2,test="LRT")AcademicYear+SchoolCode+(1|ChildID),REML=FALSE)
#Group British and Irish white- significantly better
Ethnicity3<-Ethnicity2
levels(Ethnicity3)[1:2]<-"White"
VI3<- lmer(BMI~ ageattest*Gender*Ethnicity3*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI2, VI3,test="LRT")
#Marginal- group white other with British white
Ethnicity4<-Ethnicity3
levels(Ethnicity4)[11:12]<-"Black African and other"
VI4<- lmer(BMI~ ageattest*Gender*Ethnicity4*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI3, VI4,test="LRT")
#Black African and other black can be grouped
Ethnicity5<-Ethnicity4
levels(Ethnicity5)
levels(Ethnicity5)[2:3]<-"Mixed black and white"
VI5<- lmer(BMI~ ageattest*Gender*Ethnicity5*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI4, VI5,test="LRT")
#Can group mixed black and white ethnicities
Ethnicity6<-Ethnicity5
levels(Ethnicity6)[9:10]<-"Black"
VI6<- lmer(BMI~ ageattest*Gender*Ethnicity6*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI5, VI6,TEST="LRT")
#Can group Carribean and African- significantly better fit
Ethnicity7<-Ethnicity6
levels(Ethnicity7)
levels(Ethnicity7)[5:6]<-"Indian/Pakistani"
VI7<-lmer(BMI~ ageattest*Gender*Ethnicity7*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI6, VI7,test="LRT")
#Indian can group with Pakistani- marginal
Ethnicity8<-Ethnicity7
levels(Ethnicity8)[3]<-"Asian"
levels(Ethnicity8)[5]<-"Asian"
VI8<-lmer(BMI~ ageattest*Gender*Ethnicity8*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI8, VI7,test="LRT")
#Group mixed asian with Pakistani and Indian
Ethnicity9<-Ethnicity8
levels(Ethnicity9)[5]<-"Asian"
VI9<- lmer(BMI~ ageattest*Gender + Ethnicity9*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI9, VI8,test="LRT")
#Group Asian with Bangladeshi
Ethnicity10<-Ethnicity9
levels(Ethnicity10)[5]<-"Asian"
VI10<- lmer(BMI~ ageattest+Gender*Ethnicity10*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI9, VI10,test="LRT")
#Group other Asian with Asian
Ethnicity11<-Ethnicity10
levels(Ethnicity11)[4]<-"other"
levels(Ethnicity11)[7]<-"other"
Ethnicity12<-Ethnicity11
levels(Ethnicity12)[6]<-"Asian"
VI11<- lmer(BMI~ ageattest+Gender*Ethnicity12*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI10, VI11,test="LRT")
#Group Chinese with Asian
levels(Ethnicity12)[7]<-"NA"
VI12<- lmer(BMI~ ageattest+Gender*Ethnicity12*PostcodeDecile +AcademicYear+(1|SchoolCode)+(1|ChildID),REML=FALSE)
anova(VI11, VI12,test="LRT")
summary(VI12)
#########################