-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblockchain.py
258 lines (214 loc) · 7.63 KB
/
blockchain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import datetime
import hashlib
import json
from time import time
from urllib.parse import urlparse
import requests
from merkletools import MerkleTools
mt = MerkleTools()
class Blockchain:
def __init__(self):
self.current_transactions = []
self.chain = []
self.nodes = set()
# Create the genesis block
self.new_block(previous_hash='1', proof=100, content={})
def __str__(self):
return "%s" % (self.current_transactions)
def register_node(self, address):
"""
Add a new node to the list of nodes
:param address: Address of node. Eg. 'http://192.168.0.5:5000'
"""
parsed_url = urlparse(address)
print("PARSED URL: ")
print(parsed_url.netloc)
self.nodes.add(parsed_url.netloc)
def valid_chain(self, chain):
"""
Determine if a given blockchain is valid
:param chain: A blockchain
:return: True if valid, False if not
"""
last_block = chain[0]
current_index = 1
while current_index < len(chain):
block = chain[current_index]
print(f'{last_block}')
print(f'{block}')
print("\n-----------\n")
# Check that the hash of the block is correct
if block['previous_hash'] != self.hash(last_block):
return False
# Check that the Proof of Work is correct
if not self.valid_proof(last_block['proof'], block['proof']):
return False
last_block = block
current_index += 1
return True
def resolve_conflicts(self):
"""
This is our consensus algorithm, it resolves conflicts
by replacing our chain with the longest one in the network.
:return: True if our chain was replaced, False if not
"""
"""
response = requests.get(f'http://127.0.0.1:5001/chain')
print(response)
"""
neighbours = self.nodes
print(neighbours)
new_chain = None
# We're only looking for chains longer than ours
max_length = len(str(self.chain)) # + len(self.current_transactions)
# Grab and verify the chains from all the nodes in our network
for node in neighbours:
response = requests.get(f'http://{node}/chain')
if response.status_code == 200:
length = response.json()['length']
chain = response.json()['chain']
# Check if the length is longer and the chain is valid
if length > max_length and self.valid_chain(chain):
max_length = length
new_chain = chain
# Replace our chain if we discovered a new, valid chain longer than ours
if new_chain:
self.chain = new_chain
print("NEW CHAIN")
print(self.chain)
return True
return False
def new_block(self, proof, previous_hash, content):
"""
Create a new Block in the Blockchain
:param proof: The proof given by the Proof of Work algorithm
:param previous_hash: Hash of previous Block
:return: New Block
"""
if len(content):
product_id = content['product_id']
manufacturer = content['manufacturer'],
product_name = content['product_name'],
price = content['price'],
quantity = content['quantity']
block = {
'index': len(self.chain) + 1,
'timestamp': time(),
'transactions': self.current_transactions,
'proof': proof,
'previous_hash': previous_hash or self.hash(self.chain[-1]),
'product_id': product_id,
'manufacturer': manufacturer,
'product_name': product_name,
'price': price,
'quantity': quantity
}
else:
# creating the genesis block
block = {
'index': 1,
'timestamp': time(),
'transactions': self.current_transactions,
'proof': proof,
'previous_hash': "085asad7ratte4131563",
'product_id': 0,
'manufacturer': 0,
'product_name': 0,
'price': 0,
'quantity': 0
}
# Reset the current list of transactions
self.current_transactions = []
self.chain.append(block)
mt.add_leaf(str(block), True)
mt.make_tree()
return block
def new_transaction(self, old_owner, new_owner, id): # id is product id
transaction = {
'transaction_id': hashlib.sha1(
old_owner.encode() + new_owner.encode() + str(datetime.datetime.now()).encode()).hexdigest(),
'old_owner': old_owner,
'new_owner': new_owner
}
# self.current_transactions.append(transaction)
new_block = []
for block in self.chain:
print(type(block['product_id']))
print(type(id))
if block['product_id'] == id:
block['transactions'].append(transaction)
new_block = block
break
else:
return "Not found"
return new_block
# return self.last_block['index'] + 1
def get_transaction(self,id): # id is transaction id
for block in self.chain:
for trans in block['transactions']:
if trans['transaction_id'] ==id:
test=block['transactions']
break
else:
test="error"
return test
def get_block(self,id): # id is block id
for block in self.chain:
if (block['product_id'] == id):
test = block
break
else:
test="error"
return test
def get_transaction_length(self):
x = 0
for block in self.chain:
for trans in block['transactions']:
x=x+1
else:
test="error"
print("GETTING TRANSACTION LENGTH")
print(x)
print("\n")
return x
@property
def last_block(self):
return self.chain[-1]
@staticmethod
def hash(block):
"""
Creates a SHA-256 hash of a Block
:param block: Block
"""
# We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes
block_string = json.dumps(block, sort_keys=True).encode()
return hashlib.sha256(block_string).hexdigest()
def proof_of_work(self, last_proof):
"""
Simple Proof of Work Algorithm:
- Find a number p' such that hash(pp') contains leading 4 zeroes, where p is the previous p'
- p is the previous proof, and p' is the new proof
"""
proof = 0
while self.valid_proof(last_proof, proof) is False:
proof += 1
return proof
@staticmethod
def valid_proof(last_proof, proof):
"""
Validates the Proof
:param last_proof: Previous Proof
:param proof: Current Proof
:return: True if correct, False if not.
"""
bl = False
try:
if (mt.get_leaf_count() > 2):
bl = mt.validate_proof(mt.get_proof(1), mt.get_leaf(1), mt.get_merkle_root())
except:
pass
if bl == False:
guess = f'{last_proof}{proof}'.encode()
guess_hash = hashlib.sha256(guess).hexdigest()
return guess_hash[:4] == "0000"
return bl