-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_kitti.py
321 lines (280 loc) · 14.7 KB
/
main_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from __future__ import print_function
import os
import argparse
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from kitti_datasets.frustum import FrustumKittiDataset
from model.kitti.frustum.frustum_net import FrustumPVT
from torch.utils.data import DataLoader
from modules.frustum import FrustumPointNetLoss
from kitti_datasets.config import configs
from kitti_meters.utils.common import eval_from_files
from util import IOStream
import numpy as np
import numba
from kitti_meters.frustum import MeterFrustumKitti
import shutil
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp util.py checkpoints' + '/' + args.exp_name + '/' + 'util.py.backup')
def train(args, io):
train_loader = DataLoader(FrustumKittiDataset(split='train', num_points=args.num_points, classes=configs.classes,
num_heading_angle_bins=configs.num_heading_angle_bins,class_name_to_size_template_id=configs.class_name_to_size_template_id,
from_rgb_detection=False,random_flip=True,random_shift=True,frustum_rotate=True),num_workers=16,
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(FrustumKittiDataset(split='val', num_points=args.num_points, classes=configs.classes,
num_heading_angle_bins=configs.num_heading_angle_bins,class_name_to_size_template_id=configs.class_name_to_size_template_id,
from_rgb_detection=False,random_flip=True,random_shift=True,frustum_rotate=True),num_workers=16,
batch_size=args.batch_size, shuffle=False, drop_last=False)
device = torch.device("cuda" if args.cuda else "cpu")
# Try to load models
if args.model == 'pvt':
model = FrustumPVT(num_classes=configs.num_classes, num_heading_angle_bins=configs.num_heading_angle_bins,
num_size_templates=configs.num_size_templates, num_points_per_object= configs.num_points_per_object,
size_templates=configs.size_templates, extra_feature_channels=1, width_multiplier=1,
voxel_resolution_multiplier=1).to(device)
else:
raise Exception("Not implemented")
print("Let's use", torch.cuda.device_count(), "GPUs!")
if args.use_sgd:
print("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr * 10, momentum=args.momentum, weight_decay=1e-4)
else:
print("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr)
criterion = FrustumPointNetLoss(num_heading_angle_bins=configs.num_heading_angle_bins, num_size_templates=configs.num_size_templates,
size_templates=configs.size_templates, box_loss_weight=1.0,
corners_loss_weight=10.0, heading_residual_loss_weight=20.0, size_residual_loss_weight=20.0)
eval_metrics = ('acc/iou_3d_class_acc_val', 'acc/iou_3d_acc_val')
best_metrics = {m: None for m in eval_metrics}
for epoch in range(args.epochs):
scheduler.step()
####################
# Train
####################
model.train()
for data,targets in train_loader:
for k,v in data.items():
data[k] = v.to(device)
for k,v in targets.items():
targets[k] = v.to(device)
opt.zero_grad()
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
opt.step()
####################
# Test
####################
model.eval()
meters = {}
for name, metric in [
('acc/iou_3d_{}', 'iou_3d'), ('acc/acc_{}', 'accuracy'),
('acc/iou_3d_acc_{}', 'iou_3d_accuracy'), ('acc/iou_3d_class_acc_{}', 'iou_3d_class_accuracy')
]:
meters[name.format('val')] = MeterFrustumKitti(metric=metric,num_heading_angle_bins=configs.num_heading_angle_bins,
num_size_templates=configs.num_size_templates,size_templates=configs.size_templates,
class_name_to_class_id={cat: cls for cls, cat in enumerate(configs.classes)})
for data, targets in test_loader:
for k, v in data.items():
data[k] = v.to(device)
for k, v in targets.items():
targets[k] = v.to(device)
outputs = model(data)
loss = criterion(outputs, targets)
for meter in meters.values():
meter.update(outputs, targets)
for k, meter in meters.items():
meters[k] = meter.compute()
for k, meter in meters.items():
outstr = f'Test %d, loss: %.6f,[{k}] = {meter:2f}'% (epoch,loss)
io.cprint(outstr)
best = {m: False for m in eval_metrics}
for m in eval_metrics:
if best_metrics[m] is None or best_metrics[m] < meters[m]:
best_metrics[m], best[m] = meters[m], True
torch.save(model.state_dict(), 'checkpoints/%s/model.t7' % args.exp_name)
meters[m + '_best'] = best_metrics[m]
def eval(args, io):
dataset = FrustumKittiDataset(split='val', num_points=args.num_points, classes=configs.classes,
num_heading_angle_bins=configs.num_heading_angle_bins,
class_name_to_size_template_id=configs.class_name_to_size_template_id,
from_rgb_detection=True, random_flip=True, random_shift=True,
frustum_rotate=True)
eval_loader = DataLoader(dataset, num_workers=16,batch_size=args.batch_size, shuffle=False, pin_memory=True)
device = torch.device("cuda" if args.cuda else "cpu")
# Try to load models
model = FrustumPVT(num_classes=configs.num_classes, num_heading_angle_bins=configs.num_heading_angle_bins,
num_size_templates=configs.num_size_templates, num_points_per_object= configs.num_points_per_object,
size_templates=configs.size_templates, extra_feature_channels=1, width_multiplier=1,
voxel_resolution_multiplier=1).to(device)
model.load_state_dict(torch.load(args.model_path))
model = model.eval()
results = dict()
for test_index in range(configs.eval_num_tests):
predictions = np.zeros((len(dataset), 8))
size_templates = configs.size_templates.to(device)
heading_angle_bin_centers = torch.arange(
0, 2 * np.pi, 2 * np.pi / configs.num_heading_angle_bins).to(device)
current_step = 0
with torch.no_grad():
for data, targets in eval_loader:
for k, v in data.items():
data[k] = v.to(device)
outputs = model(data)
center = outputs['center'] # (B, 3)
heading_scores = outputs['heading_scores'] # (B, NH)
heading_residuals = outputs['heading_residuals'] # (B, NH)
size_scores = outputs['size_scores'] # (B, NS)
size_residuals = outputs['size_residuals'] # (B, NS, 3)
batch_size = center.size(0)
batch_id = torch.arange(batch_size, device=center.device)
heading_bin_id = torch.argmax(heading_scores, dim=1)
heading = heading_angle_bin_centers[heading_bin_id] + heading_residuals[
batch_id, heading_bin_id] # (B, )
size_template_id = torch.argmax(size_scores, dim=1)
size = size_templates[size_template_id] + size_residuals[batch_id, size_template_id] # (B, 3)
center = center.cpu().numpy()
heading = heading.cpu().numpy()
size = size.cpu().numpy()
rotation_angle = targets['rotation_angle'].cpu().numpy() # (B, )
rgb_score = targets['rgb_score'].cpu().numpy() # (B, )
update_predictions(predictions=predictions, center=center, heading=heading, size=size,
rotation_angle=rotation_angle, rgb_score=rgb_score,
current_step=current_step, batch_size=batch_size)
current_step += batch_size
np.save('checkpoints/%s/eval.npy' % args.exp_name, predictions)
predictions_path = 'checkpoints/%s/best_.predictions_%s' % (args.exp_name, test_index)
image_ids = write_predictions(predictions_path, ids=dataset.data.ids,
classes=dataset.data.class_names, boxes_2d=dataset.data.boxes_2d,
predictions=predictions, image_id_file_path=configs.eval_image_id_file_path)
_, current_results = eval_from_files(prediction_folder=predictions_path,
ground_truth_folder=configs.eval_ground_truth_path,
image_ids=image_ids, verbose=True)
if configs.eval_num_tests == 1:
return
else:
for class_name, v in current_results.items():
if class_name not in results:
results[class_name] = dict()
for kind, r in v.items():
if kind not in results[class_name]:
results[class_name][kind] = []
results[class_name][kind].append(r)
for class_name, v in results.items():
io.cprint(f'{class_name} AP(Average Precision)')
for kind, r in v.items():
r = np.asarray(r)
m = r.mean(axis=0)
s = r.std(axis=0)
u = r.max(axis=0)
rs = ', '.join(f'{mv:.2f} +/- {sv:.2f} ({uv:.2f})' for mv, sv, uv in zip(m, s, u))
io.cprint(f'{kind:<4} AP: {rs}')
@numba.jit()
def update_predictions(predictions, center, heading, size, rotation_angle, rgb_score, current_step, batch_size):
for b in range(batch_size):
l, w, h = size[b]
x, y, z = center[b] # (3)
r = rotation_angle[b]
t = heading[b]
s = rgb_score[b]
v_cos = np.cos(r)
v_sin = np.sin(r)
cx = v_cos * x + v_sin * z # it should be v_cos * x - v_sin * z, but the rotation angle = -r
cy = y + h / 2.0
cz = v_cos * z - v_sin * x # it should be v_sin * x + v_cos * z, but the rotation angle = -r
r = r + t
while r > np.pi:
r = r - 2 * np.pi
while r < -np.pi:
r = r + 2 * np.pi
predictions[current_step + b] = [h, w, l, cx, cy, cz, r, s]
def write_predictions(prediction_path, ids, classes, boxes_2d, predictions, image_id_file_path=None):
import pathlib
# map from idx to list of strings, each string is a line (with \n)
results = {}
for i in range(predictions.shape[0]):
idx = ids[i]
output_str = ('{} -1 -1 -10 '
'{:f} {:f} {:f} {:f} '
'{:f} {:f} {:f} {:f} {:f} {:f} {:f} {:f}\n'.format(classes[i], *boxes_2d[i][:4], *predictions[i]))
if idx not in results:
results[idx] = []
results[idx].append(output_str)
# write txt files
if os.path.exists(prediction_path):
shutil.rmtree(prediction_path)
os.mkdir(prediction_path)
for k, v in results.items():
file_path = os.path.join(prediction_path, f'{k:06d}.txt')
with open(file_path, 'w') as f:
f.writelines(v)
if image_id_file_path is not None and os.path.exists(image_id_file_path):
with open(image_id_file_path, 'r') as f:
val_ids = f.readlines()
for idx in val_ids:
idx = idx.strip()
file_path = os.path.join(prediction_path, f'{idx}.txt')
if not os.path.exists(file_path):
# print(f'warning: {file_path} doesn\'t exist as indicated in {image_id_file_path}')
pathlib.Path(file_path).touch()
return image_id_file_path
else:
image_ids = sorted([k for k in results.keys()])
return image_ids
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--exp_name', type=str, default='detection', metavar='N',
help='Name of the experiment')
parser.add_argument('--model', type=str, default='pvt', metavar='N',
choices=['pvt'],
help='Model to use, [pvt]')
parser.add_argument('--dataset', type=str, default='kitti', metavar='N',
choices=['kitti'])
parser.add_argument('--batch_size', type=int, default=32, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=16, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=209, metavar='N',
help='number of episode to train ')
parser.add_argument('--use_sgd', type=bool, default=True,
help='Use SGD')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', type=bool, default=False,
help='evaluate the model')
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--model_path', type=str, default='checkpoints/detection/model.t7', metavar='N',
help='Pretrained model path')
args = parser.parse_args()
_init_()
io = IOStream('checkpoints/' + args.exp_name + '/run.log')
io.cprint(str(args))
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
io.cprint(
'Using GPU : ' + str(torch.cuda.current_device()) + ' from ' + str(torch.cuda.device_count()) + ' devices')
torch.cuda.manual_seed(args.seed)
else:
io.cprint('Using CPU')
if not args.eval:
train(args, io)
else:
eval(args, io)