-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshow_example_images.py
89 lines (67 loc) · 2.77 KB
/
show_example_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import argparse
from simple_model import simple_model
from FGSM import FGSM
def main(args):
batch_size = 10
epsilon = args.epsilon
ckpt_path = args.ckpt_path
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Data loading code
print("Loading test data")
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
dataset_test = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform_test)
# Data loader
print("Creating data loaders")
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size, sampler=test_sampler,
num_workers=16)
# model load
print("Creating and loading model")
model = simple_model(num_classes=10).to(device)
criterion = nn.CrossEntropyLoss()
model.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
model.eval()
attacker = FGSM(model, criterion, epsilon)
_show10examples(attacker, data_loader_test, device)
def _accFGSM(attacker, dataLoader, device, model):
correct = 0
total = 0
for data in dataLoader:
images, labels = data
images = images.float().to(device)
labels = labels.to(device)
# resize data from (batch_size, 1, 28, 28) to (batch_size, 28*28)
images = images.view(-1, 28 * 28)
attacked_images = attacker(images, labels)
outputs = model(attacked_images)
_, predicted = torch.max(outputs.data, 1)
for i in range(len(attacked_images)):
if predicted[i] == labels[i]:
correct += 1
total += 1
print(total, ":", 100 * correct / total)
return 100 * correct / total
def _show10examples(attacker, dataLoader, device):
for data in dataLoader:
images, labels = data
images = images.float().to(device)
labels = labels.to(device)
# resize data from (batch_size, 1, 28, 28) to (batch_size, 28*28)
images = images.view(-1, 28 * 28)
attacked_images = attacker(images, labels)
attacked_images = attacked_images.reshape((10, 1, 28, 28))
torchvision.utils.save_image(attacked_images, "repo_images/attacked_examples.png", nrow=5)
break
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument('--ckpt_path', type=str, default='modelsave/clean_simple_model.pth', help='checkpoint file path')
ap.add_argument('--epsilon', type=float, default=0.5, help='epsilon for FGSM')
args = ap.parse_args()
main(args)