forked from milesial/Pytorch-UNet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_epoch.py
executable file
·61 lines (52 loc) · 1.58 KB
/
plot_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
import sys
inputs = [
# train-eval
# 'model/unet-l23-cosmic500-e50-t1/loss.csv',
# 'model/unet-l23-cosmic500-e50-t1/eval-loss.csv',
# 'model/unet-explr-l23-cosmic500-e100/loss.csv',
# 'model/unet-explr-l23-cosmic500-e100/eval-loss.csv',
# 'model/unet-adam-l23-cosmic500-e50/loss.csv',
# 'model/unet-adam-l23-cosmic500-e50/eval-loss.csv',
'test3-th10/loss.csv',
'test3-th10/eval-loss.csv',
# sample size
# 'model/unet-l23-cosmic500-e50-t1/ep-87-85.csv',
# 'sample-size-test-400/ep-87-85.csv',
# 'sample-size-test-300/ep-87-85.csv',
# 'sample-size-test-200/ep-87-85.csv',
# 'sample-size-test-50/ep-87-85.csv',
]
labels = [
# train-eval
'Training',
'Validation',
# sample size
# '450',
# '400',
# '300',
# '200',
# '50',
]
for itag in range(len(inputs)) :
data = np.genfromtxt(inputs[itag], delimiter=',')
marker = '-o'
if labels[itag].find('Val') > 0:
marker = '-^'
plt.plot(data[:,0], data[:,int(sys.argv[1])], marker,label=labels[itag])
fontsize = 26
plt.legend(loc='best',fontsize=fontsize)
plt.grid()
# plt.ylim(0.003,0.010)
# plt.yscale('log')
plt.xlabel("Epoch", fontsize=fontsize)
plt.ylabel("Mean Loss", fontsize=fontsize)
plt.xticks(fontsize=fontsize)
plt.yticks(fontsize=fontsize)
# plt.ylabel("Pixel Efficiency", fontsize=fontsize)
# plt.ylabel("Pixel Purity", fontsize=fontsize)
# plt.ylabel("ROI Efficiency", fontsize=fontsize)
# plt.ylabel("ROI Purity", fontsize=fontsize)
plt.show()