-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
293 lines (277 loc) · 10.5 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
\documentclass[13pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{setspace}
\onehalfspacing
\usepackage{enumerate}
\usepackage{hyperref}
\usepackage{float}
\floatstyle{boxed}
\restylefloat{figure}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{color}
\usepackage{graphicx}
\usepackage{adjustbox}
\usepackage[left=1cm,right=1cm,top=2cm,bottom=2cm]{geometry}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyfoot{}
\fancyhead{}
\fancyfoot[R]{\thepage\ }
\renewcommand{\headrulewidth}{2pt}
\renewcommand{\footrulewidth}{2pt}
\fancyhead[L]{Class: EE 228}
\fancyhead[R]{Hadi Asemi}
\fancyhead[C]{Signal and Systemss}
\newlength\FHoffset
\setlength\FHoffset{1cm}
% \addtolength\headwidth{2\FHoffset}
% \fancyheadoffset{\FHoffset}
% \fancyfootoffset{\FHoffset}
\usepackage{multicol}
\setlength{\columnseprule}{0.4pt}
\def\columnseprulecolor{\color{blue}}
\usepackage{float}
\title{Formula Sheet EE228}
\author{hadiasemi }
\date{October 2019}
\begin{document}
\begin{titlepage}
\begin{center}
\line(1,0){300}\\
[0.25in]
\huge{\bfseries EE 228}\\
[2mm]
\line(1,0){300}\\
[1.5cm]
\textsc{\LARGE Signals and Systems}\\
[1.5cm]
% \includegraphics[width=70mm]{Image/7.jpg}
\textsc{\Large Fred DePiero}\\
[14cm]
\end{center}
\begin{flushright}
\textsc{\large Hadi Asemi\\
%G01049243\\
\today\\}
\end{flushright}
\end{titlepage}
\cleardoublepage
\tableofcontents
\thispagestyle{empty}
\cleardoublepage
\setcounter{page}{1}
% \begin{multicols}{2}
% \begin{gather*}
% \textbf{Usefull integrals:}\\
% \int^T_0 \sin{n\omega t} dt=0\\
% \int^T_0 \cos{n\omega t} dt=0\\
% \int^T_0 \sin{n\omega t}*\cos{n\omega t} dt=0\\
% \int^T_0 \cos{n\omega t}*\cos{m\omega t} dt=0\\
% \int^T_0 \cos^2{n\omega t} dt=\frac{T}{2}\\
% \int^T_0 \sin^2{n\omega t} dt=\frac{T}{2}\\
% \end{gather*}
% % \columnbreak
% \begin{align*}
% addititve &\rightarrow \large{ O\{x_1(t)+x_2(t)\}=O\{x_1(t)\}+O\{x_2(t)\}}\\
% homogeneous &\rightarrow O\{Kx(t)\}=KO\{x(t)\}\\
% \end{align*}
% \end{multicols}
% \begin{multicols}{2}
\setcounter{section}{0}
\setcounter{subsection}{1}
\section{Operations on Signals:}
\begin{align}
y(t)&=Cx(t)\rightarrow{\text{increase the amplitude}}\\
y(t)&=x(t-\alpha)\rightarrow{\text{shift the signal x(t)}}\\
y(t)&=x(t/2)\rightarrow{\text{expansion of x(t)}}\\
y(t)&=x(2t)\rightarrow{\text{compression of x(t)}}\\ y(t)&=x(-t)\rightarrow{\text{\small{create mirror image signal about the vertical Axis}}}\\
\end{align}
\textbf{Important:} for calculating the graph new equation we need use the $C_1t_1+D_1=t_0$.\\
$
t_0=\frac{-D_0}{C_0}
$
\section{Symmetry (Odd and Even Functions):}
\textbf{Note:} if the a signal is identical to its folded version, with \textbf{x(t)=x(-t)}, it is called \textbf{Even Symmetric.} If a signal and its folded version different only in sign, with \textbf{x(t)=-x(-t)}, it is called \textbf{Odd Symmetric.}\\
\begin{gather*}
odd=\int_{-\alpha}^\alpha x_0(t)dt=0\\
even=2\int_{0}^\alpha x_0(t)dt\\
\end{gather*}
\textbf{Important:}
\begin{align*}
x_o*y_o&\rightarrow{Even}\\
x_e+y_o&\rightarrow{\text{No symmetry}}\\
x_e*y_o&\rightarrow{Odd}\\
x(t)&=x_e(t)+x_o(t)\\
x_e(t)&=0.5[x(t)+x(-t)]\\
x_0(t)&=0.5[x(t)-x(-t)]\\
\end{align*}
\section{Sampling (or shifting) property:}
\begin{gather*}
\int_{-\infty}^{\infty}x(t)\delta(t-\tau)dt=x(\tau)\\
\delta(at)=\frac{1}{|a|}\delta(t)
\end{gather*}
\textbf{Note:} Always check the boundary of the integral for $\delta(t-\tau)$ because if is not in the boundary the integral would be zero.\\
Example:
\begin{gather*}
\int_{-3}^{-1}t^5\delta(3t+2)dt\\
\frac{1}{3}*(\frac{-2}{3})^5\int_{-3}^{-1}\delta(t+\frac{2}{3})dt=0\rightarrow \frac{-2}{3}\ne -3<t<-1
\end{gather*}
\section{Linearity:}
Check homogeneity and superposition and if we have anything like $x^2, y^2, x*x^{'},a^{y}$.\\
\section{Causality:}
An LTI system is cuasal if and only if its \textbf{impulse response} is a causal function. $h(t)=0 for t<0$
\begin{enumerate}[I)]
\item Does a system respond before an input accrues\\
\item Does these system rely on future input.\\
\end{enumerate}
\begin{align*}
y(t)&=x(t+2)\rightarrow \text{It is depend of future event, so non-causal}\\
y(t) &=x(3t)\rightarrow \text{expansion and compression}
\end{align*}
% \section{Introduce impulse response:}
% \begin{gather*}
% x(t)=\delta(t)
% \end{gather*}
\section{Dynamic vs Static(instantaneous):}
\textbf{Dynamic} system contain Energy element describe by $\frac{d}{dt} or \int dt$.\\
\textbf{Static} if the output $y(t_0)$ depends only on the instantaneous value of the input $x(t_0)$ like y(t)=Ax(t)+B. It is \textbf{static} if no derivatives are present, and every term in x and y has identical arguments.\\
\begin{align*}
y(t)\ne x(t+1)\rightarrow Dynamic
\end{align*}
Because the input value for the y and x are different.
\section{ Time-Invariant (Shift-Invariant) Systems:}
Time-scaled inputs or outputs also make a system equation time varying as with y(4t).
\begin{align*}
O\{x(t-t_0)\}=y(t-t_0)\rightarrow \text{(shift input by $\alpha \rightarrow$ shift output by $\alpha$)}
\end{align*}
To be time invariant, coefficients of the differential equation \textbf{cannot} be function of time, such as $3ty^{'}$.
\section{Stability:}
Stable if any "bounded" input x(t). \\
$|x(t)|<m_x$ for all t $m_x<\infty$ also the output is also bounded $|y(t)|<m_y , m_y<\infty$.\\
\begin{enumerate}[I)]
\item The degree of the highest derivative of x(t) must not exceed that of the highest derivative of y(t).
\item Every root of the characteristic equation must have a negative real part.
\end{enumerate}
\textbf{Example:}
\begin{gather*}
y^{''}(t)+3y^{'}(t)+2y(t)=x(t)
\end{gather*}
Stable because the roots of characteristic equation $s^2+3s+2=0$ are s=-1,-2 and have a negative real part.
\section{Even and Odd Functions:}
\begin{align*}
X_e(t) &=0.5[x(t)+x(-t)]\\
X_o(t) &=0.5[x(t)-x(-t)]\\
X(t) &=x_e(t)+x_o(t)
\end{align*}
% \begin{figure}[H]
% \centering
% \includegraphics[width=170mm]{2.jpg}
% \includegraphics[width=150mm]{1.jpg}
% % \caption{Caption}
% % \label{fig:my_label}
% \end{figure}
\section{DC Average $\&$ RMS :}
\begin{align*}
E &=\int_{-\infty}^{\infty}|x(t)|^2dt\\
P_{DC_{avg}} &=\frac{1}{T}\int^{t_0+T}_{t_0}v(t)dt\\
P_{avg} &=\frac{1}{T}\int^{t_0+T}_{t_0}v(t)^2dt\\
P_{rms} &=\sqrt{P_{avg}}
\end{align*}
% \section{Linear constant coefficient differential Equations(LTI):}
\section{Convolutions:}
The notation for convolutions is $x(t)\star h(t)$.
\begin{align*}
y(t) =x(t)\star h(t) &=\int_{0}^{t}x(\lambda)h(t-\lambda)d\lambda\\
u(t)\star u(t) &=r(t)\\
rect(t)\star rect(t) &=tri(t)\\
e^{-\alpha t}u(t) \star e^{-\alpha t}u(t) &=te^{-\alpha t}u(t)
\end{align*}
% \begin{figure}[H]
% \centering
% \includegraphics[width=20mm]{3.jpg}
% \includegraphics[width=20mm]{4.jpg}
% % \caption{Caption}
% % \label{fig:my_label}
% \end{figure}
The convolutions of any signal h(t) with impulse reproduce the h(t) signal.
\begin{gather*}
\delta(t)\star h(t)=\delta(t)
\end{gather*}
\section{The Natural, Forced, and Total Response:}
Total Response = Natural Response + Forced Response\\
The roots of the characteristic equation determine only the form of the \textbf{natural} response.\\
The input terms (RHS) of the differential equation completely determine the forced response.\\
Initial conditions satisfy the total response to yield the constants in the natural response.\\
The \textbf{forced response} arises due to the interaction of the system with the input and thus depends on both the input and the system details.
% \begin{figure}[H]
% \centering
% \includegraphics{Ne.JPG}
% \end{figure}
% \end{multicols}
\begin{figure}[H]
\centering
\includegraphics{Ne.JPG}
\end{figure}
\cleardoublepage
\section{Laplace Transform}
\begin{gather*}
\mathscr{L}[f(t)]=F(s)=\int_0^\infty e^{-st}f(t)dt
\end{gather*}
\section{LPF: }
\begin{gather*}
y(s)=X(s)*\frac{Z_c}{Z_R+Z_c}\\
H(s)=\frac{\frac{1}{\tau}}{s+\frac{1}{\tau}}\\
\frac{d}{dQ}\rightarrow y(s)[s+\frac{1}{\tau}]=\frac{1}{\tau}X(s)\\
\mathscr{L}\rightarrow y(t)^{'}+\frac{1}{\tau}y(t)=\frac{x(t)}{\tau}\\
h(t)=\frac{1}{\tau}e^{\frac{-t}{\tau}}u(t)\\
y_{step}=\int_0^th(t)dt=-1\int_0^t\frac{1}{\tau}e^{\frac{-t}{\tau}}dt =-(e^{\frac{-t}{\tau}}-1)
\end{gather*}
\section{BIBO (bounded-input,bounded output):}
\begin{enumerate}
\item \textbf{Proper: }The highest derivative of input never exceed the highest derivative of output $\frac{P(s)}{Q(s)}$ degree of P never exceed the degree of Q.
\item Poles should be inside of left hand side.
\item h(t) must absolutely integrable.
\end{enumerate}
\textbf{Example:}
\begin{align*}
H(s) &=\frac{s+1}{s^2+4} \text{not stable because of s=$\pm j$}\\
H(s) &=\frac{s^3+2}{s^2+3s+2} \text{unstable because of H(s) is not proper}\\
H(s) &=\frac{s+2}{(s+1)(s-3)}\text{unstable because RHP s=3}
\end{align*}
\textbf{Marginally stable: } if order of higher derivative of input exceeds the higher derivative of output.
\begin{gather*}
\frac{d^2x}{dt^2}+2\alpha \frac{dx}{dt}+\omega^2=f(t)\\
s^2+2\alpha s+\omega_0=0\\
\zeta =\frac{\alpha}{\omega}\\
\zeta_{settle}= \frac{u}{\zeta\omega_n}\\
\% overshoot=100 e^{\frac{-2\pi}{\sqrt{1-\zeta^2}}}\\
s_1=-\alpha+\sqrt{\alpha^2-\omega_0 ^2}\\
s_2=-\alpha-\sqrt{\alpha^2-\omega_0 ^2}\\
x_c=K_1e^{s_1t}+K_2e^{s_2t}\rightarrow \zeta>1\text{ overdamped}\\
x_c=K_1e^{s_1t}+K_2te^{s_1t}\rightarrow \zeta=1\text{ critically damped}\\
x_c=K_1e^{-\alpha t}cos(\omega_n t)+K_2e^{-\alpha t}sin(\omega _n t)\rightarrow \zeta<1 \text{ underdapmped}\\
\omega _n=\sqrt{\omega _0^2-\alpha^2}\\
\alpha=\frac{1}{2RC}\\
\omega _0=\frac{1}{\sqrt{LC}}
\end{gather*}
\section{Initial value and final value Theorem:}
The initial value theorem predicts the initial value x(0+) of the signal x(t) from its strictly proper transform X(s) as \\
$$x(0+)=\lim_{s\to\infty} [sX(s)]$$\\
The final value theorem predicts the value of the time signal x(t) as $t\rightarrow \infty$ from its transform X(s) and reads\\
$$x(\infty)=\lim_{s\to0}[sX(s)]$$
\section{Fourrier Transform:}
\begin{gather*}
% \omega=2\pi f\\
% a_0=\frac{1}{T}\int^T_0
% f(t)dt\\
% a_n=\frac{2}{T}\int_0^Tf(t)cos(\pi\omega t)dt\\
% b_n=\frac{2}{T}f(t)sin(\pi \omega t)dt\\
X(f)=\int^{\infty}_{-\infty}x(t)e^{-j2\pi ft}dt\\
inverse_{transform}=x(t)=\int^{\infty}_{-\infty}X(f)e^{j2\pi ft}dt\\
e^{i\theta}=cos(\theta)+isin(\theta)\\
e^{-i\theta}=cos(\theta)isin(\theta)\\
sin(\theta)=\frac{1}{2}[e^{i\theta}-e^{-i\theta}]\\
cos(\theta)=\frac{1}{2}[e^{i\theta}+e^{-i\theta}]
\end{gather*}
\end{document}