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1. INTRODUCTION

The processor design flow begins when the architect is given a set of
requirements—for example, a high-performance out-of-order x86 processor, or
a low-power in-order ARM processor. The architect then uses intuition and
knowledge of existing systems in order to identify an initial target architec-
ture. This intuition must be backed up by detailed quantitative studies on
representative inputs before the architecture is finalized. This process is iter-
ative, as each study leads to tweaking critical architecture parameters.

Consider the MIPS R10K-like target processor shown in Figure 1. We use
this processor as an ongoing example throughout this paper. This is a 4-way
superscalar processor, meaning that it can fetch and decode up to 4 instruc-
tions every clock cycle. It uses out-of-order issue logic, meaning that if the
head of the instruction stream is stalled the processor can examine younger
instructions to find independent operations to issue. It has 4 execution units
of varying capabilities, and thus can issue up to 4 instructions per cycle un-
der ideal circumstances. To support this the register file has 7 read ports and
4 write ports (the Jump Unit only requires one read port). Once this initial
architecture is identified the architect would like to study the effect of vari-
ous parameters such as branch predictor schemes, ALU pipeline depths, and
ROB sizes.

Early in the design process these studies are usually not concerned with
the amount of circuit area these various choices would require, nor the final
clock frequency they could achieve, beyond basic ballpark estimates. Instead
the architect is primarily concerned with studying the dynamic performance
of the system as measured in clock cycles—thus these simulators are called
performance models. Typical duties of performance models include tracking
statistics via counters and generating cycle-by-cycle traces of the system
operating on critical input segments.1

The most successful performance models:

—Are accurate enough to give architects confidence in their decisions.
—Are easy to design and modify, allowing for exploration of a range of options.
—Simulate fast enough to allow a wide range of inputs and dynamic situations

to be studied in a reasonable amount of time.

Currently design teams write most such models in software, using home-
brewed C/C++ simulators or frameworks such as SystemC. This eases model
development, but the simulation speed of software models has not been able
to keep pace with increasing complexity of modern processors. Although acad-
emic models typically claim simulation speeds in the 100s of KIPS (Thousands
of Instructions per Second) range, detailed industry models report simulation
speeds in the low KIPS range. Table I shows an overview of simulation speeds
of performance models around Intel:

1We note that it is increasingly common to combine performance models with detailed estimates
of a system’s power consumption and exposure to dynamic soft errors, as these are closely tied to
cycle-by-cycle behavior.
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Fig. 1. Example out-of-order superscalar processor target.

Table I. Simulation Speeds

Simulator Detail Simulator Speed
(order of magnitude)

Low-Detail Model 100 KHz
Medium-Detail Model 10 KHz
High-Detail Model 1 KHz

Parallelizing the software model can result in increased simulation speed
by exposing the moderate degree of parallelism which can be exploited by con-
temporary multicore processors. While performance-model algorithms contain
massive fine-grained parallelism, two factors make exploiting such a level of
parallelism difficult in software. First, within one model clock cycle, the unit of
parallel activity being simulated is equivalent to a small number of gates—yet
these gates typically require multiple host instructions to simulate. Second,
across model clock cycles there is a high amount of communication between
these parallel regions. This high amount of communication does not map well
to typical communication methods for multicores, such as shared memory.

Given these properties, intuition tells us that FPGAs should represent a
better platform for efficient execution of performance models. Contemporary
efforts to explore FPGAs as a platform for performance modeling include Penry
et al.’s [2006] accelerators for the Liberty simulator, UT-FAST [Chiou et al.
2007a; 2007b] which uses the FPGA as a timing model connected to a software
functional simulator, and our HAsim project [Pellauer et al. 2008a; 2008b]
which aims to create a variant of the Intel Asim simulation environment [Emer
et al. 2002] on an FPGA. The goals of the RAMP project also include serving
as a platform for the execution of accurate performance models [Arvind et al.
2006; Wawrzynek et al. 2007].

The key insight all of these projects share is that one simulated model clock
cycle does not have to correspond to one cycle on the FPGA. For example, a
model running on a 100 MHz FPGA could take 10 FPGA cycles to simulate
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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one model cycle and still achieve a simulation speed of 10 MHz. The main
challenge then becomes tracking the simulated model clock cycle in a distrib-
uted way that exposes sufficient fine-grain parallelism for the FPGA to exploit.

In this article we present A-Port Networks, an adaption of techniques from
the Asim simulator designed to perform efficient cycle-accurate simulation on
highly parallel substrates such as FPGAs. We give a taxonomy of existing
distributed simulation techniques and explore their strengths and weaknesses
on FPGAs. We give an implementation of A-Ports Networks for FPGAs and
discuss why it addresses these weaknesses. We demonstrate a performance
improvement of 19% using A-Ports to simulate our processor over dynamic
barrier synchronization.

We limit the discussion to models of synchronous digital systems—
asynchronous or analog systems are not considered. Although we use general-
purpose processors as an ongoing example, none of the techniques presented
are microprocessor-specific. Extending the A-Ports technique to simulate mul-
tiple clock domains or globally asynchronous locally synchronous (GALS) sys-
tems is left to future work.

2. BACKGROUND: PERFORMANCE MODELS IN ASIM

The problem of creating a performance model for a synchronous system can be
generalized to the dynamic snapshot problem:

—Given a model in state s and input i, what is the relevant state of the model
at time t?

By relevant state we mean the state elements which the architect observes
in order to determine the performance of the system. For example, in the
processor in Figure 1 the architect may decide that the internal pipeline re-
gisters of the execution units are irrelevant, while the result output by the
ALU is relevant. This is similar to the difference between architectural state
and microarchitectural state, though in many cases the distinction is not so
cut-and-dry.

Intel’s Asim [Emer et al. 2002] is a framework for creating performance
models. Asim’s main goal is to allow architects to develop performance mod-
els quickly by reusing existing pieces. To encourage this, the target system is
decomposed into individual modules (branch predictors, caches, etc.) that can
be swapped for variations in a plug-and-play manner. In order for this swap-
ping to be successful, practice has shown that the modules must have a clear
and well-documented interface as well as an explicit and easy-to-change indi-
cation of the time the computation takes. To this end, Asim has developed a
formalism known as ports, which formalizes the interface and helps separate
concerns of timing from functionality.

2.1 Asim Ports

In Asim, individual modules are arranged into a directed graph connected by
ports, communication channels annotated with a user-specified latency l. The
modules themselves have no inherent notion of time—we can consider their
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 2. Target processor as a port-based model.

computation to be infinitely fast. Time is represented only in the delay of
communication between modules. Ports of latency zero are allowed, but may
not be arranged into “combinational loops”—a familiar restriction to hardware
designers. Each port has a single writer and reader, and all communication
between modules goes between ports. Latencies are statically specified and
may not change dynamically.

Our target processor is recast as a port-based model in Figure 2. The sys-
tem has been partitioned into modules using the pipeline stages as a general
guideline. Pipeline registers were replaced ports of latency 1, such as those
connecting Fetch and Decode. The instruction- and data-memories are repre-
sented as simple static latencies, which is unrealistic but illustrative for the
purposes of this paper. The latencies associated with the ALU operations are
more complex, and require a greater explanation of port semantics.

The interface for sending a message into a port is as follows:

Send(<msg_type> data, int current_time);

Because a producer may not have sent a message, the interface for
receiving is:

bool Receive(int current_time, <msg_type>& data_out);

The Receive method returns true when the port has a message at that cycle,
which is written into the data out parameter. Each module then defines a
clock method which represents simulating a single model cycle:

clock(int current_time);

In general, this method queries the module’s input ports to determine if
they contain any messages. The module then performs all necessary compu-
tations and local state updates. It may also place messages into its output
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 3. Requirements for the processor’s ALU.

Fig. 4. A potential target ALU.

ports. The port uses its latency l to record that the message will appear on
cycle current time+l.

Now let us return to our example processor’s Integer Unit. The ALU data-
path has the general requirements shown in Figure 3—it must be able to
perform simple arithmetic operations, multiplies, and divides. The architect
wishes to explore the effect of various pipeline depths on overall system
throughput. One potential target is shown in Figure 4, which uses a 2-stage
pipeline for the simple operations and a 4-stage pipeline for the multiplier. Be-
cause the architect expects that divide operations are rare, she is considering
implementing them with a circular shift-and-subtract. (The issue stage must
know not to place more than one divide instruction in flight simultaneously.)

A port-based model of this ALU is shown in Figure 5. As it demonstrates,
performing the calculation of the operations themselves is separated from the
timing they require. As the arithmetic and multiply operations are systolic
pipelines they are represented by performing the calculation, then placing the
result into ports of latency 2 and 4, respectively.2 The circular divider pipeline
is represented differently—the output port is latency 1 and is paired with a
counter. The integer unit determines that a divide should take the target n

2This bears some similarity to circuit designers altering the placement of pipeline registers late in
the design flow. This technique is generally referred to as retiming, because moving combinational
logic past registers can be used to change the delay of the critical path. Interestingly, from a
modeling perspective “retiming” is not a good name, as the intent of this transformation is to
preserve the behavior of the the target system with respect to the model clock.
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Fig. 5. Modeling the ALU with ports.

model cycles to calculate the result, and then places the result into the port
n−1 cycles later. If the issue stage accidentally issues a new division while the
circular pipeline is busy, an assertion fails.

Based on this interface our integer unit module can be replicated twice and
plugged into the example processor from Figure 2. In general we have found
port-based modeling to provide the following benefits:

—Encourages reuse by formalizing the module interface and separating timing
concerns from functionality.

—Enables the architect to easily conduct a certain class of design exploration—
playing “what if” games by changing the latencies of ports and observing the
effects on system behavior.

—Eases model development because each module follows a similar “read,
calculate, write” pattern.

—Allows a controller to coordinate simulation, as we shall discuss.

2.2 Sequential Simulation in Software

Sequential simulation in software Asim is coordinated by a centralized con-
troller, which tracks the current model clock cycle and decides which module
should execute next. The general simulation algorithm is as follows:

modelcycle = 0;
moduleQ = sort(modules);
while (1)

foreach m in moduleQ
m.clock(modelcycle);

modelcycle++;

Note that if the model does not contain zero-latency ports, then the sorting
step can be avoided. Zero-latency ports represent a causal dependence between
the producer and consumer, implying that one must be simulated before the
other. The controller determines a simulation order by performing a topological
sort of the modules. (Cycles in the module graph can be cut at any nonzero-
latency port for the purposes of determining simulation order. Such a port is
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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guaranteed to exist because of the “no combinational loops” restriction.) As
port latencies are static, this sort only needs to be performed on simulator
startup.

2.3 Parallel Simulation in Software

Modules which are not connected by such a causal dependence may be sim-
ulated in parallel during each cycle in order to improve simulation rate. In
parallel Asim the centralized clock server runs in a thread, and uses barrier
synchronization to coordinate between a small number of simulation threads
(linearly related to the number of host cores on which the simulator is run-
ning). Because of the causal relationship imposed by zero-latency ports, best
performance is achieved when the model is partitioned in such a way that
closely coupled modules are executed by the same thread. Each thread is given
a set of modules to simulate, and stalls on a barrier when complete:

modelcycle = 0;
threads = partition(sort(modules));
while (1)

foreach t in threads
t.clockAll(modelcycle);

wait_for_barrier();
modelcycle++;

Barr et al. [2005] demonstrated that this centralized controller could be re-
moved and simulation controlled by using certain “SMP” ports, where the pro-
ducer and consumer would be in different threads. Since each module knows
the explicit model cycle, a consumer could “peer backward” through incoming
ports to determine when it was safe to proceed with simulation. The controller-
less simulation for each thread became:

modelcycle = 0;
while (1)

if (in_port.ProducerHasSimulated(modelcycle - in_port.latency))
foreach m in modules

m.clock(modelcycle);
modelcycle++;

As this demonstrates, each thread was still responsible for sequentially sim-
ulating a number of modules. This was because assigning a thread per module
would result in hundreds of threads which would overwhelm the available par-
allelism of today’s 8-to-16 core servers. Unfortunately, limiting the number of
parallel threads also undid much of the benefit compared to barrier synchro-
nization. In contrast, an FPGA is fully able to take advantage of this level of
parallelism.

3. EXISTING SIMULATION TECHNIQUES ON FPGAS

In this section we discuss various existing simulation techniques with the goal
of exposing as much parallelism as possible in Asim-like port-based systems
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 6. Overview of simulation techniques for FPGAs.

on FPGAs. We compare these techniques to each other in Figure 6 and refer to
this figure throughout this section.

3.1 The Emulation Approach

The first approach we consider is to use the FPGA clock to represent the model
clock directly. In such a system running the model for t clock cycles would sim-
ply require ticking the physical FPGA clock t times. We refer to this approach
as direct emulation, Node A in Figure 6.

The main problem with the emulation approach is that it requires each mod-
ule in the system to complete all of its work in a single FPGA clock cycle. If
the target ASIC employs structures that do not map well onto FPGAs (e.g.,
multiported register files, or content-addressable memories) then the result-
ing FPGA clock period is likely to be poor, slowing the rate of simulation. For
example, consider the register file of our target processor. As stated above, this
register file requires 7 read ports and 4 write ports. Implementing this on an
FPGA directly would be very expensive, as shown in Figure 7, design A.

A better approach is to disassociate the FPGA clock cycle from the model
clock cycle—a simulation rather than an emulation, in our terminology. Thus
we may replace the register file with a space-efficient FPGA structure, a syn-
chronous BlockRAM with one read port and one write port. Now we use 7
FPGA cycles to simulate the behavior of the target register file, as shown in
Figure 7, design B, which can represent a significant savings. (We can over-
lap the writes with the reads because we have higher-level knowledge that the
addresses are guaranteed to be distinct within one model cycle.)

3.2 Analyzing Simulation Approaches

While separating the model clock from the FPGA clock can save area, its effect
on performance is less clear. While it can increase frequency, we must also
take into account the number of FPGA cycles required to simulate a model
cycle, which we call the FPGA-cycle to Model cycle Ratio (FMR). FMR is similar
to the microprocessor performance metric Cycles Per Instruction (CPI) in that
one can observe the FMR of a run, a region, or a particular class of instructions
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 7. FPGA resources can be saved by simulating the target register file.

in order to gain insight into simulator performance. The FMR of a simulator
combined with its FPGA clock rate gives us simulation rate:

frequencysimulator =
frequencyFPG A

FMRoverall
.

The simulation approach is only useful if the gains to frequencyFPG A are
not offset by a large FMR. In practice we find that simulator Hz is not the
best metric to measure performance models of processors on FPGAs. This is
because models often require fewer cycles to simulate pipeline bubbles than
heavy activity, and thus these idle cycles lower FMR. A better metric is to
evaluate simulators on their simulated Instructions Per Second (IPS). For a
software simulator this is calculated as:

IPSsimulator =
frequencysimulator

CPImodel
.

Plugging in our above equation gives us the means to calculate the IPS of
an FPGA performance model:

IPSsimulator =
frequencyFPG A

CPImodel × FMRoverall
.

In addition to improving performance, we must ensure that the simulation
approach does not introduce any temporal violations. Such a violation occurs
when a value from model cycle n + k is accidentally used to calculate a value
on model cycle n. In highly parallel environments such as FPGAs, this typi-
cally occurs because of a race condition, whereby a producer writes a value be-
fore a consumer has properly finished computing with the predecessor value.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Another issue is the ability of a simulator to advance the model clock. If the
simulator is unable to advance the clock, we will refer to this as a temporal
deadlock.3

The goal of a distributed simulation technique is to maximize simulator IPS
while avoiding temporal violations and minimizing the overhead in terms of
FPGA resource utilization. Classically, techniques fall into two broad cate-
gories: those which track time explicitly (also called “event-driven” simulation)
and those that track time implicitly (also called “continuous” simulation).

3.3 Simulation with Explicit Timekeeping

Distributed simulation techniques that explicitly carry time are variants of the
Chandy-Misra-Bryant simulation technique [Chandy and Misra 1981; Bryant
1979], Node B in Figure 6. In such schemes all data in the system is associated
with a timestamp. Operations on data also increment the timestamp by the
appropriate amount.

Any FPGA-optimized circuit may be used to perform the operations—the
number of FPGA cycles that such a circuit requires to compute will have
no impact on the results of simulation, but only the FMR of the simulator.
Additionally, this scheme enables playing “what if” games with the simulated
timings without substantial code changes.

The main benefit of explicit-time schemes is that model cycles with no ac-
tivity do not need to be simulated explicitly. For example, on FPGA clock cycle
300 we may be simulating model time t, but by adding 1000 to the timestamp
we would be simulating time t + 1000 on FPGA cycle 301. This is why such
simulation schemes are referred to as “event-driven,” as idle model cycles are
passed over until an event occurs.

The disadvantage of such techniques is the overhead of explicitly storing,
transmitting, and manipulating timestamps. Practice has shown that perfor-
mance models—which simulate the core pipelines of synchronous systems—do
not generally demonstrate enough idle areas of the system to compensate for
this overhead. It is significant to note that the major performance models writ-
ten in software use continuous simulation techniques rather than event-driven
techniques.

3.4 Simulation with Implicit Timekeeping

Continuous simulation techniques make use of the fact that the target system
is a synchronous system with only a single (or a small number of) distinct
clock domains. These techniques are able to make the timekeeping implicit,
using the coordination of behavior among the simulated modules to simulate
the target clock.

One straightforward way to coordinate distributed modules is to assign
each module n FPGA cycles to simulate one model cycle. This is unit-delay

3Note that this is distinct from a model-level deadlock, which results when the target design
is faulty. If the target enters a deadlocked state, then the performance model should correctly
simulate the machine remaining in that state as model time continues to advance.
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Fig. 8. Dynamic barrier synchronization with centralized controller.

simulation (Node C of Figure 6), historically used in projects such as the IBM
Yorktown Simulation Engine [Pfister 1982]. This technique retains the benefit
that any FPGA-optimized implementation of a circuit may be used, whether or
not its cycle-by-cycle behavior matches that of the target circuit.

The advantage of the unit-delay scheme is that there is very little overhead.
All modules can be implemented as finite-state machines which read their in-
puts, calculate for n cycles, and write their outputs. Temporal deadlocks are
impossible, and temporal violations can be easily avoided by restricting pro-
ducers to write their outputs only on the final FPGA cycle of a model cycle. We
can create a snapshot of the system on model cycle t by observing the state of
the system on FPGA cycle n × t.

Such a simulator would simulate at a rate of frequencyFPG A/n. Thus unit-
delay simulation is appropriate when the static worst-case n is small. In prac-
tice, however, there are likely to be rare, exceptional events that require a large
amount of time to simulate. Moreover, unit-delay simulation cannot be used
when n cannot be bounded—for example if the FPGA occasionally communi-
cates with a host processor via a PCI connection. We conclude that although
unit-delay simulation offers many benefits, it is unsuitable in a large number
of practical situations.

An alternative is to have the FPGA-to-model cycle ratio determined dynam-
ically. This would be a dynamic barrier synchronization (Node D in Figure 6),
where all modules coordinate dynamically on when to move to the next model
cycle. As is shown in Figure 8, a centralized controller tracks model time, and
alerts all modules when it is time to advance to the next model cycle. The mod-
ules then simulate, and report back when finished. When all modules have
finished, the time counter is incremented, and the modules are alerted to pro-
ceed again. We may create snapshots of our system by observing the state
only on model cycle boundaries. Temporal deadlock is possible if an individual
module does not terminate a model cycle, though this is avoidable in practice.

One example of a circuit that can take a dynamic number of FPGA cycles
to simulate is a content-addressable memory (CAM). Directly implementing
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 9. Dynamic barrier synchronization’s centralized controller limits scalability.

such a circuit on the FPGA can be prohibitively expensive. One alternative is
to use a synchronous BlockRAM and sequentially search the memory. Under
the unit-delay scheme we would have to bound n as the worst case—searching
the entire RAM, which is a rare occurrence. In general, in dynamic barrier
simulation we take the average number of cycles required to simulate a model
cycle, while still tolerating rare worst cases when they occur. The result can be
a significant decrease in FMR.

The main problem with barrier synchronization is the scalability of the cen-
tral controller. Combinational signals to and from the controller can impose a
large burden on the FPGA place and route tools. To assess this problem we
devised an experiment. We created a simple module with a small amount of
combinational logic, so that it would not affect the critical path. This module
was then replicated n times in a strict linear hierarchy, so as not to impose any
additional restrictions on the place-and-route tools. The modules were synthe-
sized for the Xilinx VirtexIIPro 30 FPGA using Xilinx ISE 8.2i, and demon-
strated a 39% loss of clock speed as a result of the centralized controller, as
shown in Figure 9. In addition, we observed that the execution time of the
FPGA place-and-route tools increased 20-fold over these same data points, in
spite of the fact that the largest target used less than 10% of FPGA slices. We
conclude that the dynamic barrier synchronization technique offers benefits
over the unit-delay case, but also faces scaling issues which limit it to a small
numbers of modules.

One approach would be to attempt to improve the clock frequency of the bar-
rier simulation method, perhaps by pipelining the combinational AND-gate, or
arranging the modules into a tree in order to ease the place-and-route require-
ments. But even if the FPGA frequency problem could be solved completely,
the barrier synchronization approach still limits performance by forcing all
modules to move in lockstep. In the next section we present A-Port Networks,
a distributed simulation technique we developed for the fine-grained paral-
lelism of FPGAs. A-Port Networks do not require explicit timestamps, static
rates, or centralized barriers. We quantitatively demonstrate a performance
improvement for simulating our target processor of up to 19% over dynamic
barrier synchronization using the A-Ports scheme.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 10. An A-Port Network is a restricted Kahn process network.

4. A-PORT NETWORKS

As explained in Section 2, software Asim performance models use an explicit
representation of time and a centralized controller to coordinate simulation.
As we noted in Section 3, both of these choices would carry a large overhead on
the FPGA. To this end we developed a novel scheme tailored to the particulars
of an FPGA. We name our scheme A-Port Networks, to distinguish it from prior
work on Asim ports, and to emphasize the generality of the approach.

4.1 Distributed Simulation Scheme

As shown in Figure 10, a simulation of a port-based model can be viewed as a
Kahn process network [Kahn 1974]. The initial placement of tokens is derived
from the latencies of the ports themselves. We can exploit the parallelism in
this model if we can allow each node, or module, to proceed to the next model
cycle when all incoming edges contain data, in the standard dataflow manner.

Our simulator is not an arbitrary process network. It is a reflection of a par-
ticular synchronous system. Therefore, we must restrict the nodes’ behavior
beyond that of general process networks in order to avoid temporal violations.
Specifically, each node must always be at an identifiable model cycle k. Fur-
thermore, the nodes at model cycle k may only observe the kth element of their
incoming message streams, and may only produce the k + 1th element of their
outgoing data streams. The key insight of the A-Port Network is that we can
accomplish this by making each node behave as follows:

—Each time a node processes it must consume exactly one input from each
incoming edge, and write exactly one output to each outgoing edge.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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This represents a restriction over generalized process networks, where
nodes can dynamically choose how many inputs to consume, and how many
outputs to write. As a result of this restriction, an observer can deduce what
model cycle a node is simulating by counting the number of times it has exe-
cuted this simulation loop. Thus the A-Ports scheme (Node E in Figure 6) is
an implicit tracking of the model clock. Additionally, no temporal violations
are possible as long as nodes do not “peek” at the next values in the message
stream. Also, temporal deadlocks are avoided as long as each node takes a
finite amount of wall-clock time to simulate each model cycle, and sufficient
buffering is present, as we discuss in Section 5.

In order to accommodate this restriction we must change the semantics of
classical Asim ports. As described in Section 2, in the sequential simulator
each module is told the current model cycle by a centralized controller, thus
there is no issue if a module does not write one of its output ports. In the
distributed A-Port Network, neglecting to write a port is no longer an option.
To resolve this we introduce a special value called NoMessage, which indi-
cates the lack of data at a particular location in the data stream. (We also use
NoMessage as the initial tokens in the system.) Thus the complete distributed
simulation loop is as follows:

—When all incoming A-Ports are not empty, a module may begin computation.
Note that some of its inputs may be NoMessage, and that this is explicitly
different from an empty port.

—When computation is complete, the module must write all of its outgoing
A-Ports. It may write NoMessage or some other value, but must write all of
them exactly once.

—The messages are consumed from the incoming A-Ports and the loop
repeats.

The net effect of this simulation loop is to allow every module in the system
to produce and consume data at any wall-clock rate, while still maintaining a
local notion of a model clock step. To put this another way, an A-Port Network
effectively turns a synchronous system into an asynchronous system, while
still preserving the timed behavior of the synchronous system with respect to
snapshots. In this respect A-Port Networks are similar to the Chandy-Misra-
Bryant simulation scheme. The main contribution of A-Port Networks is to do
this without explicit timestamps or a central controller, making it amenable to
implementation on FPGAs.

Because modules simulate at different wall-clock rates, adjacent modules
often are simulating different model cycles. A producer may run into the fu-
ture, precomputing values as fast as possible. We say an A-Port of latency l is
balanced when it contains exactly l elements. When an A-Port contains more
than l elements it is heavy, and similarly it is light when it contains fewer than
l elements. Observe:

—When an A-Port is balanced, the modules it connects are simulating the
same model cycle.
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Fig. 11. A-Port Network can improve FMR over barrier synchronization.

—When an A-Port is heavy, the producer module is simulating into the future
compared to the receiving module.

—When an A-Port is light, the situation is reversed.

We say that simulation via A-Ports is decoupled because a module can “slip”
ahead as long as its input data is available. This can result in a performance
improvement over barrier synchronization, as demonstrated in Figure 11. In
this example, instructions a and c take more FPGA time to compute compared
to b and d. Observe that on FPGA cycle 4 module A is simulating model cycle
3, whereas module B is simulating model cycle 2.

The amount that adjacent modules can “slip” in time is limited by the buffer-
ing available. The consumer module of an l-latency A-Port can run ahead at
most l model clock cycles before draining the buffer. A producer writing into
an A-Port with k extra buffering can only proceed k cycles ahead before filling
the buffer. Selecting the appropriate buffer sizes can have a significant impact
on simulator performance, as we will show in Section 5.

4.2 Obtaining Consistent Snapshots

Obtaining a snapshot of relevant state in the A-Ports scheme is complicated by
the fact that the decoupled modules may have slipped in time. As we are using
an implicit notion of time, the modules themselves may not know what cycle
they are simulating.

One possible solution is to observe every module in a distributed fashion,
and reconstruct the snapshot from these observations. For instance, an ob-
server of the processor Fetch module could record the Fetch state after model
cycle t, which would later be combined with the Execute state, etc. The over-
head of communicating these distributed observations could become costly,
similar to those of dynamic barrier synchronization’s central controller. An
alternative is to rebalance the decoupled modules to the same model cycle
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 16, Pub. date: September 2009.
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Fig. 12. Obtaining a consistent snapshot from a slipped state.

before enabling the result capture. To resynchronize the system, modules
enter a mode where they use the following protocol:

—If any output A-Ports are light, or any input A-Ports are heavy, simulate the
next model cycle (assuming all input A-Ports are not empty).

If all modules follow this protocol, the system will eventually quiesce. At the
point of quiescence every A-Port will be balanced, and thus every module will
be on the same model clock cycle.

To see why, consider that at any given FPGA cycle there will be a nonempty
set of modules that are furthest ahead in model cycles. These modules will, by
definition, have no light outputs or heavy inputs, and therefore will not move
forward. Any incoming ports to this group must be light and any outgoing ports
must be heavy. Therefore the modules which are connected to these ports will
attempt to simulate the next model cycle. The only reason they would not be
able to proceed would be if they did not have all of their inputs ready. Yet
somewhere in the system there must be a nonempty set of modules that is
farthest behind in time, and thus able to simulate the next cycle. Since the
graph is connected, any module which can simulate will only make progress
towards increasing the set of modules farthest ahead in time. Eventually this
set will include every module, every port will be balanced, and the system will
not proceed.

Figure 12 shows an example of this quiescing. Our example processor model
is in a state where the Decode module has recently had the worst FMR, and
thus is simulating the oldest model cycle t. Note that the relationship between
two modules in model time can be derived by looking at the number of mes-
sages in the connecting ports, represented by black circles.

Figure 13 shows the progression of the modules. Initially, only Decode will
proceed to the next model cycle (t + 1, which it will do because it has heavy
inputs and light ouputs, as indicated by hv and lt in the figure). Then Fetch,
Decode, and Issue will proceed to cycle t + 2. Every A-Port is now balanced,
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Fig. 13. Execution order to quiesce Figure 12.

Fig. 14. A-Port implementation on FPGAs.

except for the ones between IMem and Fetch. If the modules were using the
normal protocol then IMem would attempt to proceed into the future, but in
this case it has no heavy inputs or light outputs. As a consequence, all the
other modules will proceed one more cycle in causal order, as shown. At this
point every A-Port in the system will be balanced, so the system will quiesce
until it receives a command to resume simulation using the normal protocol.
Note that in this state the number of messages in each A-Port matches the
initialization conditions, so simulation is guaranteed to be able to resume.

As an additional benefit, when the simulator quiesces, it is straightforward
to add a mode where the simulator can step forward one model cycle at a time.
This stepping mode can be useful for debugging or for real-time interaction
between the user and the simulator.

5. IMPLEMENTING A-PORT NETWORKS ON FPGAS

As shown in Figure 14, we implement an A-Port of message type t as a FIFO of
t + 1 bit-wide elements, the extra bit indicating NoMessage (in addition to the
standard FIFO valid bits). On an FPGA each A-Port must have finite buffering.
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In order to guarantee the absence of temporal deadlock, the following sufficient
conditions must be met:

—Each A-Port of latency l must contain at least l + 1 buffering.
—Each A-Port of latency l is initialized to contain l copies of NoMessage at

simulator startup.
—Modules should be arranged in a connected graph.

To see why this prevents temporal deadlock, consider that when the simu-
lator starts up every module will be able to simulate a cycle, unless they have
a zero-latency input port. The “no combinational loops” requirement guaran-
tees that any such modules are transitively connected to modules which have
non-zero-latency inputs, and thus are able to simulate. Furthermore, note that
by simulating a model cycle, a module can never disable other modules from
simulating model cycles, but only enable them (though it may disable itself).
Therefore there will always be one or more modules in the simulator which are
able to proceed to the next model cycle.

These conditions are closely related to the correctness conditions of Lee’s
[1987] static synchronous dataflow graphs, as we discuss in Section 6. The pri-
mary difference is that in A-Ports Networks the buffering requirements and
initial placement of data is derived from the latencies of the A-Ports them-
selves. Thus the properties of the asynchronous implementation are correct
because they reflect properties of the target synchronous system, rather than
requiring the user to determine buffer sizes or placement of tokens manually.

5.1 Quantitative Assessment

In order to assess our A-Ports implementation we identified two target proces-
sors. First, a traditional five-stage in-order microprocessor pipeline. Second,
the more realistic out-of-order superscalar processor, which we have used as
an ongoing example. As the instruction set is not the focus of this research
we chose a subset of the MIPS ISA. To maximize the impact of the processor
pipeline itself, the core is assumed to be paired with one-cycle “magic” memory
rather than a realistic cache hierarchy.

As shown in Figure 15, the processors were decomposed into modules and
connected both using barrier synchronization and A-Port Networks. Our im-
plementation of the model focused on efficiency of FPGA configuration. To this
end we used BlockRAMs for every large structure in the processor, including
the branch predictor, branch target buffer, and register file. In the superscalar
processor we implemented only a single ALU and multiplexed it to simulate
the four physical pipelines. The effect of these transformations was to reduce
implementation effort and increase area efficiency, at the cost of using more
FPGA cycles per model cycle.

The designs were implemented using Bluespec SystemVerilog, and were
synthesized for a Xilinx Virtex II Pro platform and assessed for simulation
speed and efficiency. We measured the targets running small benchmarks: nu-
meric median and multiplication, quick sort, Towers of Hanoi, and vector-
vector addition. While we acknowledge the limitations of trying to draw
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Fig. 15. Assessment methodology showing the in-order target.

Fig. 16. Assessing the target processors as a sanity check.

conclusions from small benchmarks running on processors not paired with
a realistic memory hierarchy, the results (Figure 16), show the out-of-order
processor performing between 2.4 and 5.8 times faster than the 5-stage
pipeline, depending on the amount of instruction-level parallelism available in
the benchmark. These results match our intuition that the out-of-order proces-
sor is a better architecture—it would execute substantially faster (assuming
the circuit design team was able to achieve an equivalent clock speed, and that
the area overhead was not prohibitive).

These results represent the insights into the target design that most users
of performance models care about. However, as simulator architects, we are
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Fig. 17. Simulator synthesis results for Virtex II Pro 70.

Fig. 18. Assessing the in-order simulators.

also interested in comparative simulator performance. The physical proper-
ties of the simulators are given in Figure 17. These results demonstrate that
when we consider simulator performance the situation is reversed—the five-
stage simulator can simulate model clocks more than twice as fast (14 MHz vs
6 MHz), due to the multiplexing of the ALU which the out-of-order superscalar
model does during every model cycle. However when we consider simulated
Instructions per Second, the situation is more balanced (5.1 vs 4.7 MIPS). This
metric correctly compensates for the difference in target CPI—remaining dif-
ferences are due to the overhead of simulating out-of-order execution.

The results comparing barrier synchronization to A-Ports are shown in
Figures 18 and 19. These results show that the in-order simulator using
A-Ports is an average of 23% faster versus barrier synchronization. For the out-
of-order model, the situation is more complicated. Using the minimum buffer
sizes results in a 4% improvement versus barrier synchronization. However,
as we noted in Section 4, the A-Ports buffer size limits the amount adjacent
modules can slip in model time. Figure 20 demonstrates that increasing the
amount of buffering results in a significant performance improvement for the
out-of-order model, allowing it to achieve a simulation rate 19% faster than
barrier synchronization. In contrast, increasing the buffer sizes does not re-
sult in any further improvement for the 5-stage pipeline. This is because the
modules in the 5-stage pipeline are more evenly balanced, and thus do not slip
with respect to each other as frequently for our benchmarks.

Although these assessments were done on relatively simple cores without a
memory hierarchy, our hypothesis is that adding detail to these models will not
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Fig. 19. Assessing the out-of-order simulators.

Fig. 20. Out-of-order simulator performance improvement as buffering increases.

significantly impact simulation rate. The reason is that a realistic model will
use the FPGA to perform the simulation of the cache hierarchy and intercon-
nect network in parallel with that of the core. Thus while these structures will
certainly require FPGA resources, FPGA cycles per model cycle should remain
relatively unchanged.

What may require more FPGA cycles to simulate is rare-but-complex target
behavior such as exceptions or system call instructions. Taking multiple FPGA
cycles to simulate these events can result in a significant saving of FPGA re-
sources. (For example, by communicating with an off-FPGA simulator, as in
Chung et al. [2008].) However if these events are rare enough then the impact
on simlation rate should be minimized. We believe that the computer archi-
tect’s principle of “make the common case fast” should be equally applicable to
simulations as to the target designs themselves.

6. RELATED WORK

6.1 Performance Models on FPGAs

Early efforts at creating performance models on FPGAs such as Ray and Hoe
[2003] and Wunderlich and Hoe [2004] shared the goal of creating a model
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early in the design process, but these efforts used the FPGA clock itself as
the simulation clock, reducing fidelity in order to ease development time and
save FPGA resources. Thus these are more closely aligned with what we have
termed a direct emulation approach.

An alternative to re-implementing the entire performance model onto the
FPGA is maintaining a software simulator and accelerating critical tasks in
hardware. Penry et al. [2006] explored using the Power PCs on Xilinx Virtex II
Pro FPGAs to accelerate the software Liberty Simulation Environment. Logic
was configured into the FPGA fabric that allowed Liberty to track the number
of clock cycles a task took. Thus all model timing was equivalent to FPGA
timings—an emulation approach, in our terminology.

The approach of taking many FPGA cycles to simulate one model cycle was
popularized by the RAMP project [Arvind et al. 2006; Wawrzynek et al. 2007].
RAMP aims to model systems with hundreds of chips in them by spreading
them across multiple FPGAs, and across multiple boards. Ramp Description
Language [Gibeling et al. 2006], or RDL, allows the model-builder to create
“channels” between units. These channels have FIFO semantics with user-
specifiable model time latency and bandwidth, similar to the A-Ports presented
here. However the focus of RAMP channels is different, in that they are meant
to connect large units, such as processor cores which may even be on different
FPGAs. Hence RAMP channels use a credit-based protocol appropriate for
connecting large blocks. In contrast, A-Ports do not force the designer to use
blocks which interact with a credit-based protocol, as they are meant to connect
much smaller blocks on the level of pipeline stages. We note that a RAMP
channel could be implemented using two A-Ports, one flowing from producer to
consumer with the data, the other flowing in the reverse with the credit.

Chiou’s UT-FAST is a hybrid hardware-software performance model which
uses a software functional emulator to drive an FPGA which adds timing in-
formation to the instruction stream [Chiou et al. 2007a; 2007b]. UT-FAST
originally used FPGA registers to add timing information to the instruction
stream, with a one-to-one correspondence between FPGA cycles and model cy-
cles. Subsequently, UT-FAST developed a more generalized connector which
was also inspired by Asim ports, as presented in Chiou et al. [2007b]. The focus
of this connector is slightly different, as it reuses the buffering of the channel
itself to represent buffering of the target, which mixes concerns of simulator
implementation and model properties. Additionally UT-FAST connectors use
a protocol which allows them to be time-multiplexed, so that n conceptually
different channels can share the same physical buffer for efficient implemen-
tation. Currently there is an ongoing collaboration to reach a convergence
between UT-FAST connectors and A-Port Networks.

6.2 Process Networks and the NoMessage Value

As already noted, an A-Port network is a restricted case of a general Kahn
process network [Kahn 1974], where the buffer sizes are fixed and the nodes
must consume and produce exactly one input from each edge. With these re-
strictions the closest formalism is that of marked directed graphs [Commoner
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Fig. 21. In A-Port Networks, the NoMessage value is used in place of not sending a message.

et al. 1971]. As shown in Figure 21, the largest difference between A-Port Net-
works and classic process networks or dataflow graphs is handling the absence
of data using the NoMessage value. Classically, a node may choose to send a
token on one output but not another. In an A-Port Network this would cause
the two recipients to disagree about the current model cycle, as the consumer
node cannot distinguish between the “previous node is still computing” and the
“previous node is done computing and no message is coming.”

In this sense the NoMessage value plays a role similar to the null messages
of the Chandy-Misra-Bryant explicit timestamp scheme [Chandy and Misra
1981]. In this scheme the simulation may deadlock unless individual modules
communicate messages with a timestamp of the node’s local current simulated
cycle. A-Port networks can be viewed as a degenerate case of this where the
fact that a message (or NoMessage) is sent at every time step replaces the
timestamp itself.

A-Port Networks are also a restricted case of Lee’s static synchronous
dataflow [Lee and Messerschmitt 1987]. In such a system nodes statically de-
clare how many inputs they will produce and consume, and this number need
not necessarily be one per edge. It is believed, though not yet proven, that in-
troducing the NoMessage value into an arbitrary static synchronous dataflow
graph allows us to transform any synchronous dataflow graph into one where
every node only produces and consumes one token on each edge per processing
step (though some of those tokens may be NoMessage). If this is true, A-Port
Networks represent a complete restriction.

The theory of latency-insensitive design developed by Carloni et al. [2001]
shares a great deal of motivation with our work, as it aims to convert an origi-
nally synchronous system into an asynchronous system. In a properly latency-
insensitive system delay-changing relay stations may be added as necessary
in order to break long physical wires into smaller segments. The resulting
system is latency-equivalent to the original system, a requirement which is
weaker than maintaining the snapshot-equivalence we discuss here. Carloni
also uses a null-message τ symbol; however, this is used as a stalling event
which signals that a given node is not computing. Thus this symbol is not
equivalent to our NoMessage, but is more akin to the FPGA cycles on which a
module cannot proceed because one or more input A-Ports are empty. Because
of this, latency-insensitive theory also requires that when a module is able
to compute it must produce its output within one host clock cycle, whereas
A-Port Networks allow the module any number of FPGA clock cycles to com-
pute before producing a result.
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7. DISCUSSION

In this article, we explored FPGAs as a platform for executing cycle-accurate
performance models. We discussed how performance models are created in
software and why contemporary mutlicores are not able to exploit the paral-
lelism inherent in these models. We explored the strengths and weaknesses of
existing distributed schemes for synchronous simulation in the particular con-
text of FPGAs. This article, introduced A-Port Networks and explored how the
ability of adjacent modules to be simultaneously simulating different model
cycles can lead to a performance improvement. Finally, we implemented two
models and demonstrated an average improvement in simulation rate of 19%
for our out-of-order model given appropriately sized buffers.

In the future, we hope to extend the technique to efficiently handle modeling
multiple clock domains. Additionally we hope to use the multiple physical clock
domains on the FPGA to allow adjacent modules to run in separate FPGA clock
domains. The goal of the HAsim project [Pellauer et al. 2008a; 2008b] is to use
A-Ports, combined with other techniques from software performance models
[Pellauer et al. 2008b], to create a high-detail model of a chip-multiprocessor
(CMP) on an FPGA.
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