-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtest_base.py
1011 lines (825 loc) · 45.1 KB
/
test_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Functions to test the coregistration base classes."""
from __future__ import annotations
import inspect
import re
import warnings
from typing import Any, Callable, Iterable, Mapping
import geopandas as gpd
import geoutils as gu
import numpy as np
import pandas as pd
import pytest
import pytransform3d.rotations
import rasterio as rio
from geoutils import Raster, Vector
from geoutils.raster import RasterType
from scipy.ndimage import binary_dilation
import xdem
from xdem import coreg, examples
from xdem._typing import NDArrayf
from xdem.coreg.base import Coreg, apply_matrix, dict_key_to_str
def load_examples() -> tuple[RasterType, RasterType, Vector]:
"""Load example files to try coregistration methods with."""
reference_dem = Raster(examples.get_path("longyearbyen_ref_dem"))
to_be_aligned_dem = Raster(examples.get_path("longyearbyen_tba_dem"))
glacier_mask = Vector(examples.get_path("longyearbyen_glacier_outlines"))
# Crop to smaller extents for test speed
res = reference_dem.res
crop_geom = (
reference_dem.bounds.left,
reference_dem.bounds.bottom,
reference_dem.bounds.left + res[0] * 300,
reference_dem.bounds.bottom + res[1] * 300,
)
reference_dem = reference_dem.crop(crop_geom)
to_be_aligned_dem = to_be_aligned_dem.crop(crop_geom)
return reference_dem, to_be_aligned_dem, glacier_mask
def assert_coreg_meta_equal(input1: Any, input2: Any) -> bool:
"""Short test function to check equality of coreg dictionary values."""
# Different equality check based on input: number, callable, array, dataframe
if not isinstance(input1, type(input2)):
return False
elif isinstance(input1, (str, float, int, np.floating, np.integer, tuple, list)) or callable(input1):
return input1 == input2
elif isinstance(input1, np.ndarray):
return np.array_equal(input1, input2, equal_nan=True)
elif isinstance(input1, pd.DataFrame):
return input1.equals(input2)
# If input is a dictionary, we recursively call this function to check equality of all its sub-keys
elif isinstance(input1, dict):
return all(assert_coreg_meta_equal(input1[k], input2[k]) for k in input1.keys())
else:
raise TypeError(f"Input type {type(input1)} not supported for this test function.")
class TestCoregClass:
ref, tba, outlines = load_examples() # Load example reference, to-be-aligned and mask.
inlier_mask = ~outlines.create_mask(ref)
fit_params = dict(reference_elev=ref, to_be_aligned_elev=tba, inlier_mask=inlier_mask)
# Create some 3D coordinates with Z coordinates being 0 to try the apply functions.
points_arr = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [0, 0, 0, 0]], dtype="float64").T
points = gpd.GeoDataFrame(
geometry=gpd.points_from_xy(x=points_arr[:, 0], y=points_arr[:, 1], crs=ref.crs), data={"z": points_arr[:, 2]}
)
def test_init(self) -> None:
"""Test instantiation of Coreg"""
c = coreg.Coreg()
assert c._fit_called is False
assert c._is_affine is None
assert c._needs_vars is False
def test_info(self) -> None:
"""
Test all coreg keys required for info() exist by mapping all sub-keys in CoregDict and comparing to
coreg.base.dict_key_to_str.
Check the info() string return contains the right text for a given key.
"""
# This recursive function will find all sub-keys that are not TypedDict within a TypedDict
def recursive_typeddict_items(typed_dict: Mapping[str, Any]) -> Iterable[str]:
for key, value in typed_dict.__annotations__.items():
try:
sub_typed_dict = getattr(coreg.base, value.__forward_arg__)
if type(sub_typed_dict) is type(typed_dict):
yield from recursive_typeddict_items(sub_typed_dict)
except AttributeError:
yield key
# All subkeys
list_coregdict_keys = list(recursive_typeddict_items(coreg.base.CoregDict)) # type: ignore
# Assert all keys exist in the mapping key to str dictionary used for info
list_info_keys = list(dict_key_to_str.keys())
# TODO: Remove ICP keys here once generic optimizer is used
# Temporary exceptions: pipeline/blockwise + gradientdescending/icp
list_exceptions = [
"step_meta",
"pipeline",
"rejection_scale",
"num_levels",
]
# Compare the two lists
list_missing_keys = [k for k in list_coregdict_keys if (k not in list_info_keys and k not in list_exceptions)]
if len(list_missing_keys) > 0:
raise AssertionError(
f"Missing keys in coreg.base.dict_key_to_str " f"for Coreg.info(): {', '.join(list_missing_keys)}"
)
# Check that info() contains the mapped string for an example
c = coreg.Coreg(meta={"subsample": 10000})
assert dict_key_to_str["subsample"] in c.info(as_str=True)
@pytest.mark.parametrize("coreg_class", [coreg.VerticalShift, coreg.ICP, coreg.NuthKaab]) # type: ignore
def test_copy(self, coreg_class: Callable[[], Coreg]) -> None:
"""Test that copying work expectedly (that no attributes still share references)."""
# Create a coreg instance and copy it.
corr = coreg_class()
corr_copy = corr.copy()
# Assign some attributes and .metadata after copying, respecting the CoregDict type class
corr._meta["outputs"]["affine"] = {"shift_z": 30}
# Make sure these don't appear in the copy
assert corr_copy.meta != corr.meta
def test_error_method(self) -> None:
"""Test different error measures."""
dem1: NDArrayf = np.ones((50, 50)).astype(np.float32)
# Create a vertically shifted dem
dem2 = dem1.copy() + 2.0
affine = rio.transform.from_origin(0, 0, 1, 1)
crs = rio.crs.CRS.from_epsg(4326)
vshiftcorr = coreg.VerticalShift()
# Fit the vertical shift
vshiftcorr.fit(dem1, dem2, transform=affine, crs=crs)
# Check that the vertical shift after coregistration is zero
assert vshiftcorr.error(dem1, dem2, transform=affine, crs=crs, error_type="median") == 0
# Remove the vertical shift fit and see what happens.
vshiftcorr.meta["outputs"]["affine"]["shift_z"] = 0
# Now it should be equal to dem1 - dem2
assert vshiftcorr.error(dem1, dem2, transform=affine, crs=crs, error_type="median") == -2
# Create random noise and see if the standard deviation is equal (it should)
rng = np.random.default_rng(42)
dem3 = dem1.copy() + rng.random(size=dem1.size).reshape(dem1.shape)
assert abs(vshiftcorr.error(dem1, dem3, transform=affine, crs=crs, error_type="std") - np.std(dem3)) < 1e-6
@pytest.mark.parametrize("subsample", [10, 10000, 0.5, 1]) # type: ignore
def test_get_subsample_on_valid_mask(self, subsample: float | int) -> None:
"""Test the subsampling function called by all subclasses"""
# Define a valid mask
width = height = 50
rng = np.random.default_rng(42)
valid_mask = rng.integers(low=0, high=2, size=(width, height), dtype=bool)
# Define a class with a subsample and random_state in the .metadata
coreg = Coreg(meta={"subsample": subsample, "random_state": 42})
subsample_mask = coreg._get_subsample_on_valid_mask(valid_mask=valid_mask)
# Check that it returns a same-shaped array that is boolean
assert np.shape(valid_mask) == np.shape(subsample_mask)
assert subsample_mask.dtype == bool
# Check that the subsampled values are all within valid values
assert all(valid_mask[subsample_mask])
# Check that the number of subsampled value is coherent, or the maximum possible
if subsample <= 1:
# If value lower than 1, fraction of valid pixels
subsample_val: float | int = int(subsample * np.count_nonzero(valid_mask))
else:
# Otherwise the number of pixels
subsample_val = subsample
assert np.count_nonzero(subsample_mask) == min(subsample_val, np.count_nonzero(valid_mask))
all_coregs = [
coreg.VerticalShift,
coreg.NuthKaab,
coreg.ICP,
coreg.Deramp,
coreg.TerrainBias,
coreg.DirectionalBias,
]
@pytest.mark.parametrize("coreg_class", all_coregs) # type: ignore
def test_subsample(self, coreg_class: Callable) -> None: # type: ignore
# Check that default value is set properly
coreg_full = coreg_class()
argspec = inspect.getfullargspec(coreg_class)
assert (
coreg_full.meta["inputs"]["random"]["subsample"]
== argspec.defaults[argspec.args.index("subsample") - 1] # type: ignore
)
# But can be overridden during fit
coreg_full.fit(**self.fit_params, subsample=10000, random_state=42)
assert coreg_full.meta["inputs"]["random"]["subsample"] == 10000
# Check that the random state is properly set when subsampling explicitly or implicitly
assert coreg_full.meta["inputs"]["random"]["random_state"] == 42
# Test subsampled vertical shift correction
coreg_sub = coreg_class(subsample=0.1)
assert coreg_sub.meta["inputs"]["random"]["subsample"] == 0.1
# Fit the vertical shift using 10% of the unmasked data using a fraction
coreg_sub.fit(**self.fit_params, random_state=42)
# Do the same but specify the pixel count instead.
# They are not perfectly equal (np.count_nonzero(self.mask) // 2 would be exact)
# But this would just repeat the subsample code, so that makes little sense to test.
coreg_sub = coreg_class(subsample=self.tba.data.size // 10)
assert coreg_sub.meta["inputs"]["random"]["subsample"] == self.tba.data.size // 10
coreg_sub.fit(**self.fit_params, random_state=42)
# Add a few performance checks
coreg_name = coreg_class.__name__
if coreg_name == "VerticalShift":
# Check that the estimated vertical shifts are similar
assert (
abs(coreg_sub.meta["outputs"]["affine"]["shift_z"] - coreg_full.meta["outputs"]["affine"]["shift_z"])
< 0.1
)
elif coreg_name == "NuthKaab":
# Calculate the difference in the full vs. subsampled matrices
matrix_diff = np.abs(coreg_full.to_matrix() - coreg_sub.to_matrix())
# Check that the x/y/z differences do not exceed 30cm
assert np.count_nonzero(matrix_diff > 0.5) == 0
def test_subsample__pipeline(self) -> None:
"""Test that the subsample argument works as intended for pipelines"""
# Check definition during instantiation
pipe = coreg.VerticalShift(subsample=200) + coreg.Deramp(subsample=5000)
# Check the arguments are properly defined
assert pipe.pipeline[0].meta["inputs"]["random"]["subsample"] == 200
assert pipe.pipeline[1].meta["inputs"]["random"]["subsample"] == 5000
# Check definition during fit
pipe = coreg.VerticalShift() + coreg.Deramp()
pipe.fit(**self.fit_params, subsample=1000)
assert pipe.pipeline[0].meta["inputs"]["random"]["subsample"] == 1000
assert pipe.pipeline[1].meta["inputs"]["random"]["subsample"] == 1000
def test_subsample__errors(self) -> None:
"""Check proper errors are raised when using the subsample argument"""
# A warning should be raised when overriding with fit if non-default parameter was passed during instantiation
vshift = coreg.VerticalShift(subsample=100)
with pytest.warns(
UserWarning,
match=re.escape(
"Subsample argument passed to fit() will override non-default "
"subsample value defined at instantiation. To silence this "
"warning: only define 'subsample' in either fit(subsample=...) "
"or instantiation e.g. VerticalShift(subsample=...)."
),
):
vshift.fit(**self.fit_params, subsample=1000)
# Same for a pipeline
pipe = coreg.VerticalShift(subsample=200) + coreg.Deramp()
with pytest.warns(
UserWarning,
match=re.escape(
"Subsample argument passed to fit() will override non-default "
"subsample values defined for individual steps of the pipeline. "
"To silence this warning: only define 'subsample' in either "
"fit(subsample=...) or instantiation e.g., VerticalShift(subsample=...)."
),
):
pipe.fit(**self.fit_params, subsample=1000)
# Same for a blockwise co-registration
block = coreg.BlockwiseCoreg(coreg.VerticalShift(subsample=200), subdivision=4)
with pytest.warns(
UserWarning,
match=re.escape(
"Subsample argument passed to fit() will override non-default subsample "
"values defined in the step within the blockwise method. To silence this "
"warning: only define 'subsample' in either fit(subsample=...) or "
"instantiation e.g., VerticalShift(subsample=...)."
),
):
block.fit(**self.fit_params, subsample=1000)
def test_coreg_raster_and_ndarray_args(self) -> None:
# Create a small sample-DEM
dem1 = xdem.DEM.from_array(
np.arange(25, dtype="int32").reshape(5, 5),
transform=rio.transform.from_origin(0, 5, 1, 1),
crs=4326,
nodata=-9999,
)
# Assign a funny value to one particular pixel. This is to validate that reprojection works perfectly.
dem1.data[1, 1] = 100
# Translate the DEM 1 "meter" right and add a vertical shift
dem2 = dem1.reproject(bounds=rio.coords.BoundingBox(1, 0, 6, 5), silent=True)
dem2 += 1
# Create a vertical shift correction for Rasters ("_r") and for arrays ("_a")
vshiftcorr_r = coreg.VerticalShift()
vshiftcorr_a = vshiftcorr_r.copy()
# Fit the data
vshiftcorr_r.fit(reference_elev=dem1, to_be_aligned_elev=dem2)
vshiftcorr_a.fit(
reference_elev=dem1.data,
to_be_aligned_elev=dem2.reproject(dem1, silent=True).data,
transform=dem1.transform,
crs=dem1.crs,
)
# Validate that they ended up giving the same result.
assert vshiftcorr_r.meta["outputs"]["affine"]["shift_z"] == vshiftcorr_a.meta["outputs"]["affine"]["shift_z"]
# De-shift dem2
dem2_r = vshiftcorr_r.apply(dem2)
dem2_a, _ = vshiftcorr_a.apply(dem2.data, transform=dem2.transform, crs=dem2.crs)
# Validate that the return formats were the expected ones, and that they are equal.
# Issue - dem2_a does not have the same shape, the first dimension is being squeezed
# TODO - Fix coreg.apply?
assert isinstance(dem2_r, xdem.DEM)
assert isinstance(dem2_a, np.ma.masked_array)
assert np.ma.allequal(dem2_r.data.squeeze(), dem2_a)
# If apply on a masked_array was given without a transform, it should fail.
with pytest.raises(ValueError, match="'transform' must be given"):
vshiftcorr_a.apply(dem2.data, crs=dem2.crs)
# If apply on a masked_array was given without a crs, it should fail.
with pytest.raises(ValueError, match="'crs' must be given"):
vshiftcorr_a.apply(dem2.data, transform=dem2.transform)
# If transform provided with input Raster, should raise a warning
with pytest.warns(UserWarning, match="DEM .* overrides the given 'transform'"):
vshiftcorr_a.apply(dem2, transform=dem2.transform)
# If crs provided with input Raster, should raise a warning
with pytest.warns(UserWarning, match="DEM .* overrides the given 'crs'"):
vshiftcorr_a.apply(dem2, crs=dem2.crs)
# Inputs contain: coregistration method, is implemented, comparison is "strict" or "approx"
@pytest.mark.parametrize(
"inputs",
[
[xdem.coreg.VerticalShift(), True, "strict"],
[xdem.coreg.NuthKaab(), True, "approx"],
[xdem.coreg.NuthKaab() + xdem.coreg.VerticalShift(), True, "approx"],
[xdem.coreg.BlockwiseCoreg(step=xdem.coreg.NuthKaab(), subdivision=16), False, ""],
[xdem.coreg.ICP(), False, ""],
],
) # type: ignore
def test_apply_resample(self, inputs: list[Any]) -> None:
"""
Test that the option resample of coreg.apply works as expected.
For vertical correction only (VerticalShift, Deramp...), option True or False should yield same results.
For horizontal shifts (NuthKaab etc), georef should differ, but DEMs should be the same after resampling.
For others, the method is not implemented.
"""
# Ignore curve_fit potential warnings
warnings.filterwarnings("ignore", "Covariance of the parameters could not be estimated*")
# Get test inputs
coreg_method, is_implemented, comp = inputs
ref_dem, tba_dem, outlines = load_examples() # Load example reference, to-be-aligned and mask.
# Prepare coreg
inlier_mask = ~outlines.create_mask(ref_dem)
coreg_method.fit(tba_dem, ref_dem, inlier_mask=inlier_mask)
# If not implemented, should raise an error
if not is_implemented:
with pytest.raises(NotImplementedError, match="Option `resample=False` not supported*"):
coreg_method.apply(tba_dem, resample=False)
return
else:
dem_coreg_resample = coreg_method.apply(tba_dem)
dem_coreg_noresample = coreg_method.apply(tba_dem, resample=False)
if comp == "strict":
# Both methods should yield the exact same output
assert dem_coreg_resample == dem_coreg_noresample
elif comp == "approx":
# The georef should be different
assert dem_coreg_noresample.transform != dem_coreg_resample.transform
# After resampling, both results should be almost equal
dem_final = dem_coreg_noresample.reproject(dem_coreg_resample)
diff = dem_final - dem_coreg_resample
assert np.all(np.abs(diff.data) == pytest.approx(0, abs=1e-2))
# assert np.count_nonzero(diff.data) == 0
# Test it works with different resampling algorithms
coreg_method.apply(tba_dem, resample=True, resampling=rio.warp.Resampling.nearest)
coreg_method.apply(tba_dem, resample=True, resampling=rio.warp.Resampling.cubic)
with pytest.raises(ValueError, match="'None' is not a valid rasterio.enums.Resampling method.*"):
coreg_method.apply(tba_dem, resample=True, resampling=None)
@pytest.mark.parametrize("coreg_class", all_coregs) # type: ignore
def test_fit_and_apply(self, coreg_class: Callable) -> None: # type: ignore
"""Check that fit_and_apply returns the same results as using fit, then apply, for any coreg."""
# Initiate two similar coregs
coreg_fit_then_apply = coreg_class()
coreg_fit_and_apply = coreg_class()
# Perform fit, then apply
coreg_fit_then_apply.fit(**self.fit_params, subsample=10000, random_state=42)
aligned_then = coreg_fit_then_apply.apply(elev=self.fit_params["to_be_aligned_elev"])
# Perform fit and apply
aligned_and = coreg_fit_and_apply.fit_and_apply(**self.fit_params, subsample=10000, random_state=42)
# Check outputs are the same: aligned raster, and metadata keys and values
assert list(coreg_fit_and_apply.meta.keys()) == list(coreg_fit_then_apply.meta.keys())
# TODO: Fix randomness of directional bias...
if coreg_class != coreg.DirectionalBias:
assert aligned_and.raster_equal(aligned_then, warn_failure_reason=True)
assert all(
assert_coreg_meta_equal(coreg_fit_and_apply.meta[k], coreg_fit_then_apply.meta[k])
for k in coreg_fit_and_apply.meta.keys()
)
def test_fit_and_apply__pipeline(self) -> None:
"""Check if it works for a pipeline"""
# Initiate two similar coregs
coreg_fit_then_apply = coreg.NuthKaab() + coreg.Deramp()
coreg_fit_and_apply = coreg.NuthKaab() + coreg.Deramp()
# Perform fit, then apply
coreg_fit_then_apply.fit(**self.fit_params, subsample=10000, random_state=42)
aligned_then = coreg_fit_then_apply.apply(elev=self.fit_params["to_be_aligned_elev"])
# Perform fit and apply
aligned_and = coreg_fit_and_apply.fit_and_apply(**self.fit_params, subsample=10000, random_state=42)
assert aligned_and.raster_equal(aligned_then, warn_failure_reason=True)
assert list(coreg_fit_and_apply.pipeline[0].meta.keys()) == list(coreg_fit_then_apply.pipeline[0].meta.keys())
assert all(
assert_coreg_meta_equal(
coreg_fit_and_apply.pipeline[0].meta[k], coreg_fit_then_apply.pipeline[0].meta[k] # type: ignore
)
for k in coreg_fit_and_apply.pipeline[0].meta.keys()
)
assert list(coreg_fit_and_apply.pipeline[1].meta.keys()) == list(coreg_fit_then_apply.pipeline[1].meta.keys())
assert all(
assert_coreg_meta_equal(
coreg_fit_and_apply.pipeline[1].meta[k], coreg_fit_then_apply.pipeline[1].meta[k] # type: ignore
)
for k in coreg_fit_and_apply.pipeline[1].meta.keys()
)
@pytest.mark.parametrize(
"combination",
[
("dem1", "dem2", "None", "None", "fit", "passes", ""),
("dem1", "dem2", "None", "None", "apply", "passes", ""),
("dem1.data", "dem2.data", "dem1.transform", "dem1.crs", "fit", "passes", ""),
("dem1.data", "dem2.data", "dem1.transform", "dem1.crs", "apply", "passes", ""),
(
"dem1",
"dem2.data",
"dem1.transform",
"dem1.crs",
"fit",
"warns",
"'reference_dem' .* overrides the given *",
),
("dem1.data", "dem2", "dem1.transform", "None", "fit", "warns", "'dem_to_be_aligned' .* overrides .*"),
(
"dem1.data",
"dem2.data",
"None",
"dem1.crs",
"fit",
"error",
"'transform' must be given if both DEMs are array-like.",
),
(
"dem1.data",
"dem2.data",
"dem1.transform",
"None",
"fit",
"error",
"'crs' must be given if both DEMs are array-like.",
),
(
"dem1",
"dem2.data",
"None",
"dem1.crs",
"apply",
"error",
"'transform' must be given if DEM is array-like.",
),
(
"dem1",
"dem2.data",
"dem1.transform",
"None",
"apply",
"error",
"'crs' must be given if DEM is array-like.",
),
("dem1", "dem2", "dem2.transform", "None", "apply", "warns", "DEM .* overrides the given 'transform'"),
(
"None",
"None",
"None",
"None",
"fit",
"error",
"Input elevation data should be a raster, " "an array or a geodataframe.",
),
("dem1 + np.nan", "dem2", "None", "None", "fit", "error", "'reference_dem' had only NaNs"),
("dem1", "dem2 + np.nan", "None", "None", "fit", "error", "'dem_to_be_aligned' had only NaNs"),
],
) # type: ignore
def test_coreg_raises(self, combination: tuple[str, str, str, str, str, str, str]) -> None:
"""
Assert that the expected warnings/errors are triggered under different circumstances.
The 'combination' param contains this in order:
1. The reference_dem (will be eval'd)
2. The dem to be aligned (will be eval'd)
3. The transform to use (will be eval'd)
4. The CRS to use (will be eval'd)
5. Which coreg method to assess
6. The expected outcome of the test.
7. The error/warning message (if applicable)
"""
ref_dem, tba_dem, transform, crs, testing_step, result, text = combination
# Create a small sample-DEM
dem1 = xdem.DEM.from_array(
np.arange(25, dtype="float64").reshape(5, 5),
transform=rio.transform.from_origin(0, 5, 1, 1),
crs=4326,
nodata=-9999,
)
dem2 = dem1.copy() # noqa
# Evaluate the parametrization (e.g. 'dem2.transform')
ref_dem, tba_dem, transform, crs = map(eval, (ref_dem, tba_dem, transform, crs))
# Use VerticalShift as a representative example.
vshiftcorr = xdem.coreg.VerticalShift()
def fit_func() -> Coreg:
return vshiftcorr.fit(ref_dem, tba_dem, transform=transform, crs=crs)
def apply_func() -> NDArrayf:
return vshiftcorr.apply(tba_dem, transform=transform, crs=crs)
# Try running the methods in order and validate the result.
for method, method_call in [("fit", fit_func), ("apply", apply_func)]:
with warnings.catch_warnings():
if method != testing_step: # E.g. skip warnings for 'fit' if 'apply' is being tested.
warnings.simplefilter("ignore")
if result == "warns" and testing_step == method:
with pytest.warns(UserWarning, match=text):
method_call()
elif result == "error" and testing_step == method:
with pytest.raises(ValueError, match=text):
method_call()
else:
method_call()
if testing_step == "fit": # If we're testing 'fit', 'apply' does not have to be run.
return
def test_coreg_oneliner(self) -> None:
"""Test that a DEM can be coregistered in one line by chaining calls."""
dem_arr = np.ones((5, 5), dtype="int32")
dem_arr2 = dem_arr + 1
transform = rio.transform.from_origin(0, 5, 1, 1)
crs = rio.crs.CRS.from_epsg(4326)
dem_arr2_fixed, _ = (
coreg.VerticalShift()
.fit(dem_arr, dem_arr2, transform=transform, crs=crs)
.apply(dem_arr2, transform=transform, crs=crs)
)
assert np.array_equal(dem_arr, dem_arr2_fixed)
class TestCoregPipeline:
ref, tba, outlines = load_examples() # Load example reference, to-be-aligned and mask.
inlier_mask = ~outlines.create_mask(ref)
fit_params = dict(
reference_elev=ref.data,
to_be_aligned_elev=tba.data,
inlier_mask=inlier_mask,
transform=ref.transform,
crs=ref.crs,
)
# Create some 3D coordinates with Z coordinates being 0 to try the apply functions.
points_arr = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [0, 0, 0, 0]], dtype="float64").T
points = gpd.GeoDataFrame(
geometry=gpd.points_from_xy(x=points_arr[:, 0], y=points_arr[:, 1], crs=ref.crs), data={"z": points_arr[:, 2]}
)
@pytest.mark.parametrize("coreg_class", [coreg.VerticalShift, coreg.ICP, coreg.NuthKaab]) # type: ignore
def test_copy(self, coreg_class: Callable[[], Coreg]) -> None:
# Create a pipeline, add some .metadata, and copy it
pipeline = coreg_class() + coreg_class()
pipeline.pipeline[0]._meta["outputs"]["affine"] = {"shift_z": 1}
pipeline_copy = pipeline.copy()
# Add some more .metadata after copying (this should not be transferred)
pipeline_copy.pipeline[0]._meta["outputs"]["affine"].update({"shift_y": 0.5 * 30})
assert pipeline.pipeline[0].meta != pipeline_copy.pipeline[0].meta
assert pipeline_copy.pipeline[0]._meta["outputs"]["affine"]["shift_z"]
def test_pipeline(self) -> None:
# Create a pipeline from two coreg methods.
pipeline = coreg.CoregPipeline([coreg.VerticalShift(), coreg.NuthKaab()])
pipeline.fit(**self.fit_params, subsample=5000, random_state=42)
aligned_dem, _ = pipeline.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
assert aligned_dem.shape == self.ref.data.squeeze().shape
# Make a new pipeline with two vertical shift correction approaches.
pipeline2 = coreg.CoregPipeline([coreg.VerticalShift(), coreg.VerticalShift()])
# Set both "estimated" vertical shifts to be 1
pipeline2.pipeline[0].meta["outputs"]["affine"] = {"shift_z": 1}
pipeline2.pipeline[1].meta["outputs"]["affine"] = {"shift_z": 1}
# Assert that the combined vertical shift is 2
assert pipeline2.to_matrix()[2, 3] == 2.0
# TODO: Figure out why DirectionalBias + DirectionalBias pipeline fails with Scipy error
# on bounds constraints on Mac only?
all_coregs = [
coreg.VerticalShift,
coreg.NuthKaab,
coreg.ICP,
coreg.Deramp,
coreg.TerrainBias,
# coreg.DirectionalBias,
]
@pytest.mark.parametrize("coreg1", all_coregs) # type: ignore
@pytest.mark.parametrize("coreg2", all_coregs) # type: ignore
def test_pipeline_combinations__nobiasvar(self, coreg1: Callable[[], Coreg], coreg2: Callable[[], Coreg]) -> None:
"""Test pipelines with all combinations of coregistration subclasses (without bias variables)"""
# Create a pipeline from one affine and one biascorr methods.
pipeline = coreg.CoregPipeline([coreg1(), coreg2()])
pipeline.fit(**self.fit_params, subsample=5000, random_state=42)
aligned_dem, _ = pipeline.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
assert aligned_dem.shape == self.ref.data.squeeze().shape
@pytest.mark.parametrize("coreg1", all_coregs) # type: ignore
@pytest.mark.parametrize(
"coreg2_init_kwargs",
[
dict(bias_var_names=["slope"], fit_or_bin="bin"),
dict(bias_var_names=["slope", "aspect"], fit_or_bin="bin"),
],
) # type: ignore
def test_pipeline_combinations__biasvar(
self, coreg1: Callable[[], Coreg], coreg2_init_kwargs: dict[str, str]
) -> None:
"""Test pipelines with all combinations of coregistration subclasses with bias variables"""
# Create a pipeline from one affine and one biascorr methods
pipeline = coreg.CoregPipeline([coreg1(), coreg.BiasCorr(**coreg2_init_kwargs)]) # type: ignore
bias_vars = {"slope": xdem.terrain.slope(self.ref), "aspect": xdem.terrain.aspect(self.ref)}
pipeline.fit(**self.fit_params, bias_vars=bias_vars, subsample=5000, random_state=42)
aligned_dem, _ = pipeline.apply(
self.tba.data, transform=self.ref.transform, crs=self.ref.crs, bias_vars=bias_vars
)
assert aligned_dem.shape == self.ref.data.squeeze().shape
def test_pipeline__errors(self) -> None:
"""Test pipeline raises proper errors."""
pipeline = coreg.CoregPipeline([coreg.NuthKaab(), coreg.BiasCorr()])
with pytest.raises(
ValueError,
match=re.escape(
"No `bias_vars` passed to .fit() for bias correction step "
"<class 'xdem.coreg.biascorr.BiasCorr'> of the pipeline."
),
):
pipeline.fit(**self.fit_params)
pipeline2 = coreg.CoregPipeline([coreg.NuthKaab(), coreg.BiasCorr(), coreg.BiasCorr()])
with pytest.raises(
ValueError,
match=re.escape(
"No `bias_vars` passed to .fit() for bias correction step <class 'xdem.coreg.biascorr.BiasCorr'> "
"of the pipeline. As you are using several bias correction steps requiring"
" `bias_vars`, don't forget to explicitly define their `bias_var_names` "
"during instantiation, e.g. BiasCorr(bias_var_names=['slope'])."
),
):
pipeline2.fit(**self.fit_params)
with pytest.raises(
ValueError,
match=re.escape(
"When using several bias correction steps requiring `bias_vars` in a pipeline,"
"the `bias_var_names` need to be explicitly defined at each step's "
"instantiation, e.g. BiasCorr(bias_var_names=['slope'])."
),
):
pipeline2.fit(**self.fit_params, bias_vars={"slope": xdem.terrain.slope(self.ref)})
pipeline3 = coreg.CoregPipeline([coreg.NuthKaab(), coreg.BiasCorr(bias_var_names=["slope"])])
with pytest.raises(
ValueError,
match=re.escape(
"Not all keys of `bias_vars` in .fit() match the `bias_var_names` defined during "
"instantiation of the bias correction step <class 'xdem.coreg.biascorr.BiasCorr'>: ['slope']."
),
):
pipeline3.fit(**self.fit_params, bias_vars={"ncc": xdem.terrain.slope(self.ref)})
def test_pipeline_pts(self) -> None:
pipeline = coreg.NuthKaab() + coreg.DhMinimize()
ref_points = self.ref.to_pointcloud(subsample=5000, random_state=42).ds
ref_points["E"] = ref_points.geometry.x
ref_points["N"] = ref_points.geometry.y
ref_points.rename(columns={"b1": "z"}, inplace=True)
# Check that this runs without error
pipeline.fit(reference_elev=ref_points, to_be_aligned_elev=self.tba)
for part in pipeline.pipeline:
assert np.abs(part.meta["outputs"]["affine"]["shift_x"]) > 0
assert (
pipeline.pipeline[0].meta["outputs"]["affine"]["shift_x"]
!= pipeline.pipeline[1].meta["outputs"]["affine"]["shift_x"]
)
def test_coreg_add(self) -> None:
# Test with a vertical shift of 4
vshift = 4
vshift1 = coreg.VerticalShift()
vshift2 = coreg.VerticalShift()
# Set the vertical shift attribute
for vshift_corr in (vshift1, vshift2):
vshift_corr.meta["outputs"]["affine"] = {"shift_z": vshift}
# Add the two coregs and check that the resulting vertical shift is 2* vertical shift
vshift3 = vshift1 + vshift2
assert vshift3.to_matrix()[2, 3] == vshift * 2
# Make sure the correct exception is raised on incorrect additions
with pytest.raises(ValueError, match="Incompatible add type"):
vshift1 + 1 # type: ignore
# Try to add a Coreg step to an already existing CoregPipeline
vshift4 = vshift3 + vshift1
assert vshift4.to_matrix()[2, 3] == vshift * 3
# Try to add two CoregPipelines
vshift5 = vshift3 + vshift3
assert vshift5.to_matrix()[2, 3] == vshift * 4
def test_pipeline_consistency(self) -> None:
"""Check that pipelines properties are respected: reflectivity, fusion of same coreg"""
# Test 1: Fusion of same coreg
# Many vertical shifts
many_vshifts = coreg.VerticalShift() + coreg.VerticalShift() + coreg.VerticalShift()
many_vshifts.fit(**self.fit_params, random_state=42)
aligned_dem, _ = many_vshifts.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
# The last steps should have shifts of EXACTLY zero
assert many_vshifts.pipeline[1].meta["outputs"]["affine"]["shift_z"] == pytest.approx(0, abs=10e-5)
assert many_vshifts.pipeline[2].meta["outputs"]["affine"]["shift_z"] == pytest.approx(0, abs=10e-5)
# Many horizontal + vertical shifts
many_nks = coreg.NuthKaab() + coreg.NuthKaab() + coreg.NuthKaab()
many_nks.fit(**self.fit_params, random_state=42)
aligned_dem, _ = many_nks.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
# The last steps should have shifts of NEARLY zero
assert many_nks.pipeline[1].meta["outputs"]["affine"]["shift_z"] == pytest.approx(0, abs=0.05)
assert many_nks.pipeline[1].meta["outputs"]["affine"]["shift_x"] == pytest.approx(0, abs=0.05)
assert many_nks.pipeline[1].meta["outputs"]["affine"]["shift_y"] == pytest.approx(0, abs=0.05)
assert many_nks.pipeline[2].meta["outputs"]["affine"]["shift_z"] == pytest.approx(0, abs=0.05)
assert many_nks.pipeline[2].meta["outputs"]["affine"]["shift_x"] == pytest.approx(0, abs=0.05)
assert many_nks.pipeline[2].meta["outputs"]["affine"]["shift_y"] == pytest.approx(0, abs=0.05)
# Test 2: Reflectivity
# Those two pipelines should give almost the same result
nk_vshift = coreg.NuthKaab() + coreg.VerticalShift()
vshift_nk = coreg.VerticalShift() + coreg.NuthKaab()
nk_vshift.fit(**self.fit_params, random_state=42)
aligned_dem, _ = nk_vshift.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
vshift_nk.fit(**self.fit_params, random_state=42)
aligned_dem, _ = vshift_nk.apply(self.tba.data, transform=self.ref.transform, crs=self.ref.crs)
assert np.allclose(nk_vshift.to_matrix(), vshift_nk.to_matrix(), atol=10e-1)
class TestAffineManipulation:
ref, tba, outlines = load_examples() # Load example reference, to-be-aligned and mask.
# Identity transformation
matrix_identity = np.diag(np.ones(4, float))
# Vertical shift
matrix_vertical = matrix_identity.copy()
matrix_vertical[2, 3] = 1
# Vertical and horizontal shifts
matrix_translations = matrix_identity.copy()
matrix_translations[:3, 3] = [0.5, 1, 1.5]
# Single rotation
rotation = np.deg2rad(5)
matrix_rotations = matrix_identity.copy()
matrix_rotations[1, 1] = np.cos(rotation)
matrix_rotations[2, 2] = np.cos(rotation)
matrix_rotations[2, 1] = -np.sin(rotation)
matrix_rotations[1, 2] = np.sin(rotation)
# Mix of translations and rotations in all axes (X, Y, Z) simultaneously
rotation_x = 5
rotation_y = 10
rotation_z = 3
e = np.deg2rad(np.array([rotation_x, rotation_y, rotation_z]))
# This is a 3x3 rotation matrix
rot_matrix = pytransform3d.rotations.matrix_from_euler(e=e, i=0, j=1, k=2, extrinsic=True)
matrix_all = matrix_rotations.copy()
matrix_all[0:3, 0:3] = rot_matrix
matrix_all[:3, 3] = [0.5, 1, 1.5]
list_matrices = [matrix_identity, matrix_vertical, matrix_translations, matrix_rotations, matrix_all]
@pytest.mark.parametrize("matrix", list_matrices) # type: ignore
def test_apply_matrix__points_opencv(self, matrix: NDArrayf) -> None:
"""
Test that apply matrix's exact transformation for points (implemented with NumPy matrix multiplication)
is exactly the same as the one of OpenCV (optional dependency).
"""
# Create random points
points = np.random.default_rng(42).normal(size=(10, 3))
# Convert to a geodataframe and use apply_matrix for the point cloud
epc = gpd.GeoDataFrame(data={"z": points[:, 2]}, geometry=gpd.points_from_xy(x=points[:, 0], y=points[:, 1]))
trans_epc = apply_matrix(epc, matrix=matrix)
# Run the same operation with openCV
import cv2
trans_cv2_arr = cv2.perspectiveTransform(points[:, :].reshape(1, -1, 3), matrix)[0, :, :]
# Transform point cloud back to array
trans_numpy = np.array([trans_epc.geometry.x.values, trans_epc.geometry.y.values, trans_epc["z"].values]).T
assert np.allclose(trans_numpy, trans_cv2_arr)
@pytest.mark.parametrize("regrid_method", [None, "iterative", "griddata"]) # type: ignore
@pytest.mark.parametrize("matrix", list_matrices) # type: ignore
def test_apply_matrix__raster(self, regrid_method: None | str, matrix: NDArrayf) -> None:
"""Test that apply matrix gives consistent results between points and rasters (thus validating raster
implementation, as point implementation is validated above), for all possible regridding methods."""
# Create a synthetic raster and convert to point cloud
# dem = gu.Raster(self.ref)
dem_arr = np.linspace(0, 2, 25).reshape(5, 5)
transform = rio.transform.from_origin(0, 5, 1, 1)
dem = gu.Raster.from_array(dem_arr, transform=transform, crs=4326, nodata=100)
epc = dem.to_pointcloud(data_column_name="z").ds
# If a centroid was not given, default to the center of the DEM (at Z=0).
centroid = (np.mean(epc.geometry.x.values), np.mean(epc.geometry.y.values), 0.0)
# Apply affine transformation to both datasets
trans_dem = apply_matrix(dem, matrix=matrix, centroid=centroid, force_regrid_method=regrid_method)
trans_epc = apply_matrix(epc, matrix=matrix, centroid=centroid)
# Interpolate transformed DEM at coordinates of the transformed point cloud
# Because the raster created as a constant slope (plan-like), the interpolated values should be very close
z_points = trans_dem.interp_points(points=(trans_epc.geometry.x.values, trans_epc.geometry.y.values))
valids = np.isfinite(z_points)
assert np.count_nonzero(valids) > 0
assert np.allclose(z_points[valids], trans_epc.z.values[valids], rtol=10e-5)
def test_apply_matrix__raster_nodata(self) -> None:
"""Test the nodatas created by apply_matrix are consistent between methods"""
# Use matrix with all transformations
matrix = self.matrix_all
# Create a synthetic raster, add NaNs, and convert to point cloud
dem_arr = np.linspace(0, 2, 400).reshape(20, 20)
dem_arr[10:14, 10:14] = np.nan
dem_arr[5, 5] = np.nan
dem_arr[:2, :] = np.nan
transform = rio.transform.from_origin(0, 5, 1, 1)
dem = gu.Raster.from_array(dem_arr, transform=transform, crs=4326, nodata=100)
epc = dem.to_pointcloud(data_column_name="z").ds
centroid = (np.mean(epc.geometry.x.values), np.mean(epc.geometry.y.values), 0.0)
trans_dem_it = apply_matrix(dem, matrix=matrix, centroid=centroid, force_regrid_method="iterative")
trans_dem_gd = apply_matrix(dem, matrix=matrix, centroid=centroid, force_regrid_method="griddata")
# Get nodata mask
mask_nodata_it = trans_dem_it.data.mask
mask_nodata_gd = trans_dem_gd.data.mask
# The iterative mask should be larger and contain the other (as griddata interpolates up to 1 pixel away)
assert np.array_equal(np.logical_or(mask_nodata_gd, mask_nodata_it), mask_nodata_it)
# Verify nodata masks are located within two pixels of each other (1 pixel can be added by griddata,
# and 1 removed by regular-grid interpolation by the iterative method)
smallest_mask = ~binary_dilation(
~mask_nodata_it, iterations=2
) # Invert before dilate to avoid spreading at the edges
# All smallest mask value should exist in the mask of griddata
assert np.array_equal(np.logical_or(smallest_mask, mask_nodata_gd), mask_nodata_gd)
def test_apply_matrix__raster_realdata(self) -> None:
"""Testing real data no complex matrix only to avoid all loops"""
# Use real data
dem = self.ref
dem.crop((dem.bounds.left, dem.bounds.bottom, dem.bounds.left + 2000, dem.bounds.bottom + 2000))
epc = dem.to_pointcloud(data_column_name="z").ds
# Only testing complex matrices for speed
matrix = self.matrix_all
# If a centroid was not given, default to the center of the DEM (at Z=0).
centroid = (np.mean(epc.geometry.x.values), np.mean(epc.geometry.y.values), 0.0)
# Apply affine transformation to both datasets
trans_dem_it = apply_matrix(dem, matrix=matrix, centroid=centroid, force_regrid_method="iterative")
trans_dem_gd = apply_matrix(dem, matrix=matrix, centroid=centroid, force_regrid_method="griddata")
trans_epc = apply_matrix(epc, matrix=matrix, centroid=centroid)
# Interpolate transformed DEM at coordinates of the transformed point cloud, and check values are very close
z_points_it = trans_dem_it.interp_points(points=(trans_epc.geometry.x.values, trans_epc.geometry.y.values))
z_points_gd = trans_dem_gd.interp_points(points=(trans_epc.geometry.x.values, trans_epc.geometry.y.values))
valids = np.logical_and(np.isfinite(z_points_it), np.isfinite(z_points_gd))
assert np.count_nonzero(valids) > 0
diff_it = z_points_it[valids] - trans_epc.z.values[valids]
diff_gd = z_points_gd[valids] - trans_epc.z.values[valids]
# Because of outliers, noise and slope near 90°, several solutions can exist
# Additionally, contrary to the check in the __raster test which uses a constant slope DEM, the slopes vary