-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_est_new.R
158 lines (138 loc) · 5.54 KB
/
sim_est_new.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
rm(list=ls())
#setwd('c:/Study/Stratified-mult-GGM/Codes/source codes/')
source('jsem.R')
source('Generator.R')
source('l1LS_Main.R')
source('Objval.R')
source('JMLE.R')
library(glasso)
library(parallel)
##### Function to calculate evaluation metrics
evaluate = function(TP,TN,FP,FN){
SEN = TP/(TP+FN)
SPE = TN/(TN+FP)
MCC = (TP*TN - FP*FN)/(sqrt(TP+FP)*sqrt(TP+FN)*sqrt(TN+FP)*sqrt(TN+FN))
F1 = 2*TP/(2*TP+FP+FN)
c(SEN,SPE,MCC,F1)
}
##### Common wrapper function
get.outputs = function(n=100, subnetSize.X=rep(10,2), subnetSize.E=rep(10,2),
sparsity.B=5, sparsity.Theta=5, K=5, nrep=50, filename=NULL){
## Set up some quantities
group = rbind(
c(1, 2),
c(1, 4),
c(3, 2),
c(3, 4),
c(5, 2)
) # grouping pattern
p = sum(subnetSize.X)
q = sum(subnetSize.E)
loopfun = function(rep){
set.seed(1e3*rep)
## Generate data *******************************************************
# **********************************************************************
X.layer = GenerateLayer(n, subnetSize.X, group, D=1, sparsity=sparsity.Theta/p)
E.layer = GenerateLayer(n, subnetSize.E, group, D=1, sparsity=sparsity.Theta/q)
## generate group structure for coef array
B0.group.array = array(0, c(p,q,K))
g = 1
for(i in 1:p){
for(j in 1:q){
B0.group.array[i,j,] = g
g = g+1
}
}
B0.array = CoefArray(B0.group.array)
Theta0.array = array(0, c(q,q,K))
for(k in 1:K){
Theta0.array[,,k] = with(E.layer,
diag(diag(Omega[[k]])^(-0.5)) %*% Omega[[k]] %*% diag(diag(Omega[[k]])^(-0.5)))
}
## make Y-layer
Y.layer = E.layer
for(k in 1:K){
Y.layer$data[[k]] = X.layer$data[[k]] %*% B0.array[,,k] + E.layer$data[[k]]
}
##### Given: X.list, Y.list, B.groups, Theta.groups
Y.list = lapply(Y.layer$data, as.matrix)
Y.indices = Y.layer$indices
Theta.groups = Y.layer$groups
X.list = lapply(X.layer$data, as.matrix)
Theta.group.array = array(0, c(q,q,K))
for(j in 1:q){
Theta.group.array[j,-j,] = Y.layer$groups[[j]]
}
## Obtain JMMLE fit ****************************************************
# **********************************************************************
## tune JMMLE model
lambda.vec = sqrt(log(p)/n) * seq(1.8, 0.4, -0.2)
model.list = vector("list", length(lambda.vec))
nlambda = length(lambda.vec)
## get all models
loopfun1 = function(m){
cat("Performing JMMLE for lambda =",lambda.vec[m],".....\n")
jmmle.1step(Y.list, Y.indices, X.list, B.group.array=B0.group.array, Theta.groups=Theta.groups,
lambda = lambda.vec[m],
gamma = sqrt(log(q)/n) * seq(1, 0.4, -0.1),
init.option=1, tol=1e-3, VERBOSE=F)
cat("done\n")
}
#model.list <- mclapply(1:nlambda, loopfun1, mc.cores=nlambda)
model.list <- lapply(1:nlambda, loopfun1)
## calculate HBIC
hbic.vec = rep(NA, nlambda)
for(m in 1:nlambda){
jmle.model = model.list[[m]]
if(class(jmle.model)=="list"){ ## if no error in training the model
SSE.vec = rep(0,K)
hbic.pen.vec = rep(0,K)
for(k in 1:K){
nk = nrow(Y.list[[k]])
Theta.k = jmle.model$Theta_refit$Theta[[k]]
for(j in 1:q)
{
Theta.k[j,j] = 0
}
SSE.vec[k] = sum(diag(crossprod((Y.list[[k]] - X.list[[k]] %*%
jmle.model$B.refit[,,k]) %*% (diag(1,q) - Theta.k))))/nk
hbic.pen.vec[k] = log(log(nk))*log(q*(q-1)/2)/nk * sum(Theta.k != 0)/2 +
log(log(nk))*log(p*q)/nk * sum(jmle.model$B.refit[,,k] != 0)
}
hbic.vec[m] = sum(SSE.vec) + sum(hbic.pen.vec)
}
}
## select best model
jmmle.model = model.list[[which.min(hbic.vec)]]
## Calculate metrics ***************************************************
# **********************************************************************
Theta_new.array = array(0, c(q,q,K))
for(k in 1:K){
Theta_new.array[,,k] = jmmle.model$Theta_refit$Theta[[k]]
}
TP.B = sum(B0.array != 0 & jmmle.model$B.refit != 0)
TN.B = sum(B0.array == 0 & jmmle.model$B.refit == 0)
FN.B = sum(B0.array != 0) - TP.B
FP.B = sum(B0.array == 0) - TN.B
TP.Theta = sum(Theta0.array != 0 & Theta_new.array != 0)
TN.Theta = sum(Theta0.array == 0 & Theta_new.array == 0)
FP.Theta = sum(Theta0.array != 0) - TP.Theta
FN.Theta = sum(Theta0.array == 0) - TN.Theta
cat("=============\nReplication",rep,"done!\n=============\n")
rbind(c(evaluate(TP.B,TN.B,FP.B,FN.B),sqrt(sum((B0.array - jmmle.model$B.refit)^2)/sum(B0.array^2))),
c(evaluate(TP.Theta,TN.Theta,FP.Theta,FN.Theta),
sqrt(sum((Theta0.array - Theta_new.array)^2)/sum(Theta0.array^2)))
)
}
# out.mat = mclapply(1:nrep, loopfun, mc.cores=8)
out.mat = lapply(1:nrep, loopfun)
# this mclapply sometimes gives errors for some lambdas
# which stops corresponding cores.
# *USE lapply HERE or wrap loopfun inside try() before using mclapply*
if(is.null(filename)){
filename = paste0("est_n",n,"p",p,"q",q,".rds")
}
saveRDS(out.mat, file=filename) # saves outputs as .rds file. read using readRDS()
}
##### a small simulation setup
get.outputs(n = 100, subnetSize.X = c(10, 10), subnetSize.E = c(10, 10))