diff --git a/SS_deviation.nb b/SS_deviation.nb deleted file mode 100644 index c4c712b4..00000000 --- a/SS_deviation.nb +++ /dev/null @@ -1,124 +0,0 @@ -(* Content-type: application/vnd.wolfram.mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 11.2' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 158, 7] -NotebookDataLength[ 3746, 114] -NotebookOptionsPosition[ 3098, 94] -NotebookOutlinePosition[ 3447, 109] -CellTagsIndexPosition[ 3404, 106] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ - -Cell[CellGroupData[{ -Cell[BoxData[ - RowBox[{"Phi", " ", "=", " ", - RowBox[{"\[Epsilon]", "*", - RowBox[{"Cos", "[", - RowBox[{ - RowBox[{"\[Alpha]", "*", - RowBox[{"Log", "[", - RowBox[{"r", "/", "rs"}], "]"}]}], "-", " ", - RowBox[{"m", "*", "\[Theta]"}]}], "]"}]}]}]], "Input", - CellChangeTimes->{{3.812299324365906*^9, 3.812299356510524*^9}, { - 3.812299402275013*^9, 3.8122995377713437`*^9}, {3.812299818940111*^9, - 3.8122998200058928`*^9}, {3.8122999006745744`*^9, 3.8122999093768873`*^9}, { - 3.8123001559084597`*^9, 3.8123001721667376`*^9}, {3.812300299371953*^9, - 3.8123003015950623`*^9}},ExpressionUUID->"1a3cd121-f0d7-4b0b-8a31-\ -cef8810b9fb0"], - -Cell[BoxData[ - RowBox[{"\[Epsilon]", " ", - RowBox[{"Cos", "[", - RowBox[{ - RowBox[{"m", " ", "\[Theta]"}], "-", - RowBox[{"\[Alpha]", " ", - RowBox[{"Log", "[", - FractionBox["r", "rs"], "]"}]}]}], "]"}]}]], "Output", - CellChangeTimes->{3.812299821517456*^9, 3.812299912268588*^9, - 3.812300302425089*^9},ExpressionUUID->"4bdcfee5-4a3f-47e2-8f72-\ -0eb84943074a"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"Simplify", "[", - RowBox[{ - RowBox[{"Laplacian", "[", - RowBox[{"Phi", ",", - RowBox[{"{", - RowBox[{"r", ",", "\[Theta]", ",", "z"}], "}"}], ",", - "\"\\""}], "]"}], " ", "/", " ", - RowBox[{"(", - RowBox[{"4", "*", "\[Pi]", "*", "G"}], ")"}]}], "]"}], - "\[IndentingNewLine]"}]], "Input", - CellChangeTimes->{{3.8122998802940083`*^9, 3.8122998856883087`*^9}, { - 3.8122999428034587`*^9, 3.8122999445556717`*^9}, {3.8122999842974052`*^9, - 3.8123001315872946`*^9}, {3.812300177352112*^9, 3.8123001803575807`*^9}, { - 3.812300213842621*^9, - 3.812300395212168*^9}},ExpressionUUID->"d2abdc2c-8726-44cf-b72d-\ -1bcf85b987d6"], - -Cell[BoxData[ - RowBox[{"-", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{ - SuperscriptBox["m", "2"], "+", - SuperscriptBox["\[Alpha]", "2"]}], ")"}], " ", "\[Epsilon]", " ", - RowBox[{"Cos", "[", - RowBox[{ - RowBox[{"m", " ", "\[Theta]"}], "-", - RowBox[{"\[Alpha]", " ", - RowBox[{"Log", "[", - FractionBox["r", "rs"], "]"}]}]}], "]"}]}], - RowBox[{"4", " ", "G", " ", "\[Pi]", " ", - SuperscriptBox["r", "2"]}]]}]], "Output", - CellChangeTimes->{{3.812300115175284*^9, 3.812300134601759*^9}, { - 3.81230026401114*^9, 3.8123003186143255`*^9}, 3.8123003504348726`*^9, - 3.812300396173873*^9},ExpressionUUID->"838887bb-5b71-45cf-87cd-\ -50eefe8b75b6"] -}, Open ]] -}, -WindowSize->{759, 526}, -WindowMargins->{{Automatic, 108}, {101, Automatic}}, -FrontEndVersion->"11.2 for Microsoft Windows (64-bit) (September 10, 2017)", -StyleDefinitions->"Default.nb" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[CellGroupData[{ -Cell[580, 22, 662, 14, 28, "Input",ExpressionUUID->"1a3cd121-f0d7-4b0b-8a31-cef8810b9fb0"], -Cell[1245, 38, 382, 10, 53, "Output",ExpressionUUID->"4bdcfee5-4a3f-47e2-8f72-0eb84943074a"] -}, Open ]], -Cell[CellGroupData[{ -Cell[1664, 53, 705, 17, 48, "Input",ExpressionUUID->"d2abdc2c-8726-44cf-b72d-1bcf85b987d6"], -Cell[2372, 72, 710, 19, 103, "Output",ExpressionUUID->"838887bb-5b71-45cf-87cd-50eefe8b75b6"] -}, Open ]] -} -] -*) - -(* End of internal cache information *) - diff --git a/notebooks/spiral_derivation.nb b/notebooks/spiral_derivation.nb new file mode 100644 index 00000000..bb69390a --- /dev/null +++ b/notebooks/spiral_derivation.nb @@ -0,0 +1,185 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 11.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 6735, 177] +NotebookOptionsPosition[ 5606, 150] +NotebookOutlinePosition[ 5942, 165] +CellTagsIndexPosition[ 5899, 162] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[ + RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input", + CellChangeTimes->{{3.814898753475795*^9, 3.8148987534850597`*^9}}, + CellLabel->"In[27]:=",ExpressionUUID->"86574956-c5fa-4fd0-8266-ec62114b08b6"], + +Cell[CellGroupData[{ + +Cell["Spiral Feature Potential / Density Pair", "Section", + CellChangeTimes->{{3.814898411903373*^9, 3.814898439505828*^9}, { + 3.814899148402547*^9, + 3.814899158132937*^9}},ExpressionUUID->"fbd0bc36-a86f-4130-b227-\ +90d4ae1639e0"], + +Cell[TextData[{ + "Let:\n- ", + Cell[BoxData[ + FormBox[ + SubscriptBox["r", "s"], TraditionalForm]], + FormatType->"TraditionalForm",ExpressionUUID-> + "0b5e7051-296a-4355-b655-2bfa459c62b4"], + " be the scale length\n- m the phase wrap" +}], "Text", + CellChangeTimes->{{3.814898509820797*^9, 3.8148985447486687`*^9}, { + 3.8148990866275787`*^9, 3.8148991021862793`*^9}, {3.8148991652215137`*^9, + 3.81489917052065*^9}},ExpressionUUID->"19a5019d-b896-4cb7-837b-\ +7887271f5a7f"], + +Cell["The Potential is given by:", "Text", + CellChangeTimes->{{3.814899187539977*^9, 3.8148991908563004`*^9}, { + 3.814899369471631*^9, + 3.814899371445347*^9}},ExpressionUUID->"4c4c4f32-80b8-4585-89ba-\ +4b9fd4336000"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{" ", + RowBox[{"Phi", "=", " ", + RowBox[{"\[Epsilon]", "*", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"\[Alpha]", "*", + RowBox[{"Log", "[", + FractionBox["r", "rs"], "]"}]}], "-", " ", + RowBox[{"m", "*", "\[Theta]"}]}], "]"}]}]}]}]], "Input", + CellChangeTimes->{{3.812299324365906*^9, 3.812299356510524*^9}, { + 3.812299402275013*^9, 3.8122995377713437`*^9}, {3.812299818940111*^9, + 3.8122998200058928`*^9}, {3.8122999006745744`*^9, 3.8122999093768873`*^9}, { + 3.8123001559084597`*^9, 3.8123001721667376`*^9}, {3.812300299371953*^9, + 3.8123003015950623`*^9}, {3.8148984544274282`*^9, 3.814898475035756*^9}, { + 3.81489855484459*^9, 3.814898577155437*^9}, {3.814898633417138*^9, + 3.814898635249322*^9}, {3.814898763117502*^9, 3.8148987642580557`*^9}}, + CellLabel->"In[28]:=",ExpressionUUID->"1a3cd121-f0d7-4b0b-8a31-cef8810b9fb0"], + +Cell[BoxData[ + RowBox[{"\[Epsilon]", " ", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"m", " ", "\[Theta]"}], "-", + RowBox[{"\[Alpha]", " ", + RowBox[{"Log", "[", + FractionBox["r", "rs"], "]"}]}]}], "]"}]}]], "Output", + CellChangeTimes->{ + 3.812299821517456*^9, 3.812299912268588*^9, 3.812300302425089*^9, { + 3.814898580400764*^9, 3.8148985968367987`*^9}, 3.8148986390785227`*^9, + 3.814898691994795*^9, {3.814898757272633*^9, 3.814898764667898*^9}, + 3.814899303232542*^9, 3.8148993429027147`*^9}, + CellLabel->"Out[28]=",ExpressionUUID->"1874f154-4561-41e9-8648-70286f4dd403"] +}, Open ]], + +Cell[TextData[{ + "The density is given by solving Poisson\[CloseCurlyQuote]s equation:\n", + Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["\[Del]", "2"], "\[CapitalPhi]"}], "=", + RowBox[{"4", "\[Pi]G", " ", "\[Rho]"}]}]], "Input",ExpressionUUID-> + "43d21002-6ff2-466e-bc15-82ee854615a1"] +}], "Text", + CellChangeTimes->{{3.814899187539977*^9, + 3.814899281005931*^9}},ExpressionUUID->"c0761ce3-c877-4b9c-9c81-\ +c6d5e2d25761"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"rho", " ", "=", " ", + RowBox[{"Simplify", "[", + RowBox[{ + FractionBox["1", + RowBox[{"4", "*", "\[Pi]", "*", "G"}]], + RowBox[{"Laplacian", "[", + RowBox[{"Phi", ",", + RowBox[{"{", + RowBox[{"r", ",", "\[Theta]", ",", "z"}], "}"}], ",", + "\"\\""}], "]"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.8122998802940083`*^9, 3.8122998856883087`*^9}, { + 3.8122999428034587`*^9, 3.8122999445556717`*^9}, {3.8122999842974052`*^9, + 3.8123001315872946`*^9}, {3.812300177352112*^9, 3.8123001803575807`*^9}, { + 3.812300213842621*^9, 3.812300395212168*^9}, 3.814898587696806*^9, { + 3.8148986378066597`*^9, 3.814898671700964*^9}, 3.814899298327828*^9, { + 3.814899330040409*^9, 3.814899335804686*^9}}, + CellLabel->"In[29]:=",ExpressionUUID->"d2abdc2c-8726-44cf-b72d-1bcf85b987d6"], + +Cell[BoxData[ + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["m", "2"], "+", + SuperscriptBox["\[Alpha]", "2"]}], ")"}], " ", "\[Epsilon]", " ", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"m", " ", "\[Theta]"}], "-", + RowBox[{"\[Alpha]", " ", + RowBox[{"Log", "[", + FractionBox["r", "rs"], "]"}]}]}], "]"}]}], + RowBox[{"4", " ", "G", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"]}]]}]], "Output", + CellChangeTimes->{{3.812300115175284*^9, 3.812300134601759*^9}, { + 3.81230026401114*^9, 3.8123003186143255`*^9}, 3.8123003504348726`*^9, + 3.812300396173873*^9, {3.8148985908747063`*^9, 3.814898599334854*^9}, { + 3.814898641012828*^9, 3.8148986465962973`*^9}, 3.81489869204513*^9, { + 3.8148987572870483`*^9, 3.8148987668736563`*^9}, 3.814899303261135*^9, { + 3.814899333710416*^9, 3.814899342924374*^9}}, + CellLabel->"Out[29]=",ExpressionUUID->"6ffec622-7e08-4c74-80e0-624b54792097"] +}, Open ]] +}, Open ]] +}, +WindowSize->{956, 769}, +WindowMargins->{{Automatic, 9}, {Automatic, 13}}, +FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 223, 3, 30, "Input",ExpressionUUID->"86574956-c5fa-4fd0-8266-ec62114b08b6"], +Cell[CellGroupData[{ +Cell[806, 27, 233, 4, 67, "Section",ExpressionUUID->"fbd0bc36-a86f-4130-b227-90d4ae1639e0"], +Cell[1042, 33, 476, 12, 81, "Text",ExpressionUUID->"19a5019d-b896-4cb7-837b-7887271f5a7f"], +Cell[1521, 47, 219, 4, 35, "Text",ExpressionUUID->"4c4c4f32-80b8-4585-89ba-4b9fd4336000"], +Cell[CellGroupData[{ +Cell[1765, 55, 895, 17, 46, "Input",ExpressionUUID->"1a3cd121-f0d7-4b0b-8a31-cef8810b9fb0"], +Cell[2663, 74, 602, 13, 49, "Output",ExpressionUUID->"1874f154-4561-41e9-8648-70286f4dd403"] +}, Open ]], +Cell[3280, 90, 439, 11, 52, "Text",ExpressionUUID->"c0761ce3-c877-4b9c-9c81-c6d5e2d25761"], +Cell[CellGroupData[{ +Cell[3744, 105, 852, 17, 48, "Input",ExpressionUUID->"d2abdc2c-8726-44cf-b72d-1bcf85b987d6"], +Cell[4599, 124, 979, 22, 59, "Output",ExpressionUUID->"6ffec622-7e08-4c74-80e0-624b54792097"] +}, Open ]] +}, Open ]] +} +] +*) +