-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobjectAttentionModelConvLSTM_Variation.py
135 lines (114 loc) · 5.53 KB
/
objectAttentionModelConvLSTM_Variation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import resnetMod
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
from torch.autograd import Variable
from MyConvLSTMCell import *
from itertools import permutations, combinations
import random
def pairWiseCombinations(numFrame):
l = list(combinations(np.linspace(0, numFrame, numFrame, endpoint=False, dtype=int), 2))
return np.array(l)
class OrderPredictionNetwork(nn.Module):
def __init__(self, numFrame=4, seqLen=7):
super(OrderPredictionNetwork, self).__init__()
self.combination = pairWiseCombinations(numFrame)
self.permutation = [[0,1,2,3],[0,2,1,3],[0,2,3,1],[0,1,3,2],[0,3,1,2],[0,3,2,1],[1,0,2,3],[1,0,3,2],[1,2,0,3],[2,0,1,3],[2,0,3,1],[2,1,0,3]]
self.fc6 = nn.Linear(7*7*512, 512*2 )
self.fc7 = nn.Linear(512*4, 512)
self.classifier = nn.Linear(512*len(self.combination), 12)
self.seqLen = seqLen
def forward(self, feature_conv_tens, permutationIndex):
frameSequence = []
for b in range(feature_conv_tens.size(0)):
order = permutationIndex[b].item()
x = feature_conv_tens[b].contiguous().view(feature_conv_tens[b].size(0), 512*7*7) # shape = [7 or 16, 512*7*7]
x = self.fc6(x) # shape = [7 or 16, 512*2]
frameIndexes = sorted( random.sample(range(self.seqLen), 4) )
shuffle = self.permutation[order]
newFrameIndexes = []
for i in shuffle:
newFrameIndexes.append(frameIndexes[i])
frameSequence.append( torch.index_select(x, 0, torch.LongTensor(newFrameIndexes).cuda()))
feat_orders_shuffle = torch.stack(frameSequence, 0) # shape = [32, 4, 512*2]
feat_temp = []
for f1,f2 in self.combination:
x = torch.index_select(feat_orders_shuffle, 1, torch.LongTensor([f1,f2]).cuda() ) #shape = [32, 2, 512 * 2]
x = x.view(x.size(0), 512 * 4) # shape = [32, 512 *4]
x = self.fc7(x) #shape = [32, 512]
feat_temp.append(x)
feat_temp = torch.stack(feat_temp, 0) #shape = [6, 32, 512]
feat_temp = feat_temp.permute(1,0,2) #shape = [32, 6, 512]
feat_temp = feat_temp.contiguous().view(feat_temp.size(0), 512 * len(self.combination))
y = self.classifier(feat_temp)
return y
class attentionModel(nn.Module):
def __init__(self, num_classes=61, mem_size=512, regression=True, seqLen=7):
super(attentionModel, self).__init__()
self.regression = regression
self.num_classes = num_classes
self.resNet = resnetMod.resnet34(True, True)
#MS net
#if MsFlag == True:
#self.relu = F.relu()
self.convMS = nn.Conv2d(512, 100, kernel_size=1, padding=0)
#view
if regression == False:
self.MSfc = nn.Linear(100*7*7, 2*7*7)
#view
self.m = nn.Softmax(2)
self.orderPredictionNetwork = OrderPredictionNetwork(numFrame=4, seqLen=seqLen)
else:
self.MSfc = nn.Linear(100*7*7, 1*7*7)
#else :
self.mem_size = mem_size
self.weight_softmax = self.resNet.fc.weight
self.lstm_cell = MyConvLSTMCell(512, mem_size)
self.avgpool = nn.AvgPool2d(7)
self.dropout = nn.Dropout(0.7)
self.fc = nn.Linear(mem_size, self.num_classes)
self.classifier = nn.Sequential(self.dropout, self.fc)
#self.MsFlag = MsFlag
def forward(self, inputVariable, regression, permutationIndex):
state = (Variable(torch.zeros((inputVariable.size(1), self.mem_size, 7, 7)).cuda()),
Variable(torch.zeros((inputVariable.size(1), self.mem_size, 7, 7)).cuda()))
MSfeats = []
feature_conv_list = []
orderFeats = None
for t in range(inputVariable.size(0)):
logit, feature_conv, feature_convNBN = self.resNet(inputVariable[t])
# feature_conv: torch.Size([32, 512, 7, 7])
bz, nc, h, w = feature_conv.size()
feature_conv1 = feature_conv.view(bz, nc, h*w)
probs, idxs = logit.sort(1, True)
class_idx = idxs[:, 0]
cam = torch.bmm(self.weight_softmax[class_idx].unsqueeze(1), feature_conv1)
attentionMAP = F.softmax(cam.squeeze(1), dim=1)
attentionMAP = attentionMAP.view(attentionMAP.size(0), 1, 7, 7)
attentionFeat = feature_convNBN * attentionMAP.expand_as(feature_conv)
#if self.MsFlag == True:
feat = F.relu(attentionFeat)
feat = self.convMS(feat)
feat = feat.view(feat.size(0), -1)
feat = self.MSfc(feat)
if self.regression == False:
feat = feat.view(feat.size(0), 7*7, 2)
MSfeat = self.m(feat)
feature_conv_list.append(feature_conv)
else:
MSfeat = feat.view(feat.size(0), 7*7)
MSfeats.append(MSfeat)
#else: # Order Prediction Self-supervized
#feature_conv_list.append(feature_conv)
state = self.lstm_cell(attentionFeat, state)
feats1 = self.avgpool(state[1]).view(state[1].size(0), -1)
feats = self.classifier(feats1)
#if self.MsFlag == True:
MSfeats = torch.stack(MSfeats, 0)
#else: # Order Prediction Self-supervized
if regression == False:
tensorOfFeatureConv = torch.stack(feature_conv_list, dim=0) # shape = [ 7 or 16, 32, 512, 7, 7]
tensorOfFeatureConv = tensorOfFeatureConv.permute(1,0,2,3,4) # shape = [32, 7 or 16, 512, 7, 7]
orderFeats = self.orderPredictionNetwork(tensorOfFeatureConv, permutationIndex) # forward()
return feats, feats1, MSfeats, orderFeats