-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-run-rgb.py
281 lines (238 loc) · 12.3 KB
/
main-run-rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from __future__ import print_function, division
from objectAttentionModelConvLSTM import *
from spatial_transforms import (Compose, ToTensor, CenterCrop, Scale, Normalize, MultiScaleCornerCrop,
RandomHorizontalFlip)
from tensorboardX import SummaryWriter
from makeDatasetRGB import *
import argparse
import sys
def main_run(dataset, stage, train_data_dir, val_data_dir, stage1_dict, out_dir, seqLen, trainBatchSize,
valBatchSize, numEpochs, lr1, decay_factor, decay_step, memSize):
if dataset == 'gtea61':
num_classes = 61
elif dataset == 'gtea71':
num_classes = 71
elif dataset == 'gtea_gaze':
num_classes = 44
elif dataset == 'egtea':
num_classes = 106
else:
print('Dataset not found')
sys.exit()
model_folder = os.path.join('./', out_dir, dataset, 'rgb', 'stage'+str(stage)) # Dir for saving models and log files
# Create the dir
if os.path.exists(model_folder):
print('Directory {} exists!'.format(model_folder))
!rm -rf ./experiments
#sys.exit()
os.makedirs(model_folder)
writer = SummaryWriter(model_folder)
train_log_loss = open((model_folder + '/train_log_loss.txt'), 'w')
train_log_acc = open((model_folder + '/train_log_acc.txt'), 'w')
val_log_loss = open((model_folder + '/val_log_loss.txt'), 'w')
val_log_acc = open((model_folder + '/val_log_acc.txt'), 'w')
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
spatial_transform = Compose([Scale(256), RandomHorizontalFlip(), MultiScaleCornerCrop([1, 0.875, 0.75, 0.65625], 224),
ToTensor(), normalize])
vid_seq_train = makeDataset(train_data_dir,
spatial_transform=spatial_transform, seqLen=seqLen, fmt='.png')
train_loader = torch.utils.data.DataLoader(vid_seq_train, batch_size=trainBatchSize,
shuffle=True, num_workers=4, pin_memory=True)
if val_data_dir is not None:
vid_seq_val = makeDataset(val_data_dir,
spatial_transform=Compose([Scale(256), CenterCrop(224), ToTensor(), normalize]),
seqLen=seqLen, fmt='.png')
val_loader = torch.utils.data.DataLoader(vid_seq_val, batch_size=valBatchSize,
shuffle=False, num_workers=2, pin_memory=True)
valInstances = vid_seq_val.__len__()
trainInstances = vid_seq_train.__len__()
print(f'Train instances: {trainInstances}')
train_params = []
if stage == 1:
model = attentionModel(num_classes=num_classes, mem_size=memSize)
model.train(False)
for params in model.parameters():
params.requires_grad = False
else:
model = attentionModel(num_classes=num_classes, mem_size=memSize)
model.load_state_dict(torch.load(stage1_dict))
model.train(False)
for params in model.parameters():
params.requires_grad = False
#
for params in model.resNet.layer4[0].conv1.parameters():
params.requires_grad = True
train_params += [params]
for params in model.resNet.layer4[0].conv2.parameters():
params.requires_grad = True
train_params += [params]
for params in model.resNet.layer4[1].conv1.parameters():
params.requires_grad = True
train_params += [params]
for params in model.resNet.layer4[1].conv2.parameters():
params.requires_grad = True
train_params += [params]
for params in model.resNet.layer4[2].conv1.parameters():
params.requires_grad = True
train_params += [params]
#
for params in model.resNet.layer4[2].conv2.parameters():
params.requires_grad = True
train_params += [params]
#
for params in model.resNet.fc.parameters():
params.requires_grad = True
train_params += [params]
model.resNet.layer4[0].conv1.train(True)
model.resNet.layer4[0].conv2.train(True)
model.resNet.layer4[1].conv1.train(True)
model.resNet.layer4[1].conv2.train(True)
model.resNet.layer4[2].conv1.train(True)
model.resNet.layer4[2].conv2.train(True)
model.resNet.fc.train(True)
for params in model.lstm_cell.parameters():
params.requires_grad = True
train_params += [params]
for params in model.classifier.parameters():
params.requires_grad = True
train_params += [params]
model.lstm_cell.train(True)
model.classifier.train(True)
model.cuda()
loss_fn = nn.CrossEntropyLoss()
optimizer_fn = torch.optim.Adam(train_params, lr=lr1, weight_decay=4e-5, eps=1e-4)
optim_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer_fn, milestones=decay_step,
gamma=decay_factor)
train_iter = 0
min_accuracy = 0
for epoch in range(numEpochs):
optim_scheduler.step()
epoch_loss = 0
numCorrTrain = 0
trainSamples = 0
iterPerEpoch = 0
model.lstm_cell.train(True)
model.classifier.train(True)
writer.add_scalar('lr', optimizer_fn.param_groups[0]['lr'], epoch+1)
if stage == 2:
model.resNet.layer4[0].conv1.train(True)
model.resNet.layer4[0].conv2.train(True)
model.resNet.layer4[1].conv1.train(True)
model.resNet.layer4[1].conv2.train(True)
model.resNet.layer4[2].conv1.train(True)
model.resNet.layer4[2].conv2.train(True)
model.resNet.fc.train(True)
for i, (inputs, targets) in enumerate(train_loader):
train_iter += 1
iterPerEpoch += 1
optimizer_fn.zero_grad()
inputVariable = Variable(inputs.permute(1, 0, 2, 3, 4).cuda())
labelVariable = Variable(targets.cuda())
trainSamples += inputs.size(0)
output_label, _ = model(inputVariable)
loss = loss_fn(output_label, labelVariable)
loss.backward()
optimizer_fn.step()
_, predicted = torch.max(output_label.data, 1)
numCorrTrain += (predicted == targets.cuda()).sum()
epoch_loss += loss.data[0]
avg_loss = epoch_loss/iterPerEpoch
trainAccuracy = (numCorrTrain / trainSamples) * 100
print('Train: Epoch = {} | Loss = {} | Accuracy = {}'.format(epoch+1, avg_loss, trainAccuracy))
writer.add_scalar('train/epoch_loss', avg_loss, epoch+1)
writer.add_scalar('train/accuracy', trainAccuracy, epoch+1)
if val_data_dir is not None:
if (epoch+1) % 1 == 0:
model.train(False)
val_loss_epoch = 0
val_iter = 0
val_samples = 0
numCorr = 0
for j, (inputs, targets) in enumerate(val_loader):
val_iter += 1
val_samples += inputs.size(0)
inputVariable = Variable(inputs.permute(1, 0, 2, 3, 4).cuda(), volatile=True)
labelVariable = Variable(targets.cuda(async=True), volatile=True)
output_label, _ = model(inputVariable)
val_loss = loss_fn(output_label, labelVariable)
val_loss_epoch += val_loss.data[0]
_, predicted = torch.max(output_label.data, 1)
numCorr += (predicted == targets.cuda()).sum()
val_accuracy = (numCorr / val_samples) * 100
avg_val_loss = val_loss_epoch / val_iter
print('Val: Epoch = {} | Loss {} | Accuracy = {}'.format(epoch + 1, avg_val_loss, val_accuracy))
writer.add_scalar('val/epoch_loss', avg_val_loss, epoch + 1)
writer.add_scalar('val/accuracy', val_accuracy, epoch + 1)
val_log_loss.write('Val Loss after {} epochs = {}\n'.format(epoch + 1, avg_val_loss))
val_log_acc.write('Val Accuracy after {} epochs = {}%\n'.format(epoch + 1, val_accuracy))
#CHECK!!!
if val_accuracy > min_accuracy:
save_path_model = (model_folder + '/model_rgb_state_dict.pth')
torch.save(model.state_dict(), save_path_model)
min_accuracy = val_accuracy
else:
if (epoch+1) % 10 == 0:
save_path_model = (model_folder + '/model_rgb_state_dict_epoch' + str(epoch+1) + '.pth')
torch.save(model.state_dict(), save_path_model)
train_log_loss.close()
train_log_acc.close()
val_log_acc.close()
val_log_loss.close()
writer.export_scalars_to_json(model_folder + "/all_scalars.json")
writer.close()
def __main__():
parser = argparse.ArgumentParser()
#STAGE 1
parser.add_argument('--dataset', type=str, default='gtea61', help='Dataset')
parser.add_argument('--stage', type=int, default=1, help='Training stage')
parser.add_argument('--trainDatasetDir', type=str, default='./GTEA61',
help='Train set directory')
parser.add_argument('--valDatasetDir', type=str, default=None,
help='Val set directory')
parser.add_argument('--outDir', type=str, default='experiments', help='Directory to save results')
parser.add_argument('--stage1Dict', type=str, default='./experiments/gtea61/rgb/stage1/best_model_state_dict.pth',
help='Stage 1 model path')
parser.add_argument('--seqLen', type=int, default=7, help='Length of sequence')
parser.add_argument('--trainBatchSize', type=int, default=32, help='Training batch size')
parser.add_argument('--valBatchSize', type=int, default=64, help='Validation batch size')
parser.add_argument('--numEpochs', type=int, default=300, help='Number of epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--stepSize', type=float, default=[25, 75, 150], nargs="+", help='Learning rate decay step')
parser.add_argument('--decayRate', type=float, default=0.1, help='Learning rate decay rate')
parser.add_argument('--memSize', type=int, default=512, help='ConvLSTM hidden state size')
#STAGE 2
'''parser.add_argument('--dataset', type=str, default='gtea61', help='Dataset')
parser.add_argument('--stage', type=int, default=2, help='Training stage')
parser.add_argument('--trainDatasetDir', type=str, default='./GTEA61',
help='Train set directory')
parser.add_argument('--valDatasetDir', type=str, default=None,
help='Val set directory')
parser.add_argument('--outDir', type=str, default='experiments', help='Directory to save results')
parser.add_argument('--stage1Dict', type=str, default='./experiments/gtea61/rgb/stage1/best_model_state_dict.pth',
help='Stage 1 model path')
parser.add_argument('--seqLen', type=int, default=25, help='Length of sequence')
parser.add_argument('--trainBatchSize', type=int, default=32, help='Training batch size')
parser.add_argument('--valBatchSize', type=int, default=64, help='Validation batch size')
parser.add_argument('--numEpochs', type=int, default=150, help='Number of epochs')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--stepSize', type=float, default=[25, 75], nargs="+", help='Learning rate decay step')
parser.add_argument('--decayRate', type=float, default=0.1, help='Learning rate decay rate')
parser.add_argument('--memSize', type=int, default=512, help='ConvLSTM hidden state size')'''
#args = parser.parse_args()
args, unknown = parser.parse_known_args()
dataset = args.dataset
stage = args.stage
trainDatasetDir = args.trainDatasetDir
valDatasetDir = args.valDatasetDir
outDir = args.outDir
stage1Dict = args.stage1Dict
seqLen = args.seqLen
trainBatchSize = args.trainBatchSize
valBatchSize = args.valBatchSize
numEpochs = args.numEpochs
lr1 = args.lr
stepSize = args.stepSize
decayRate = args.decayRate
memSize = args.memSize
main_run(dataset, stage, trainDatasetDir, valDatasetDir, stage1Dict, outDir, seqLen, trainBatchSize, valBatchSize, numEpochs, lr1, decayRate, stepSize, memSize)
__main__()