-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1096 from martinroyer/fixatol
Some robustifying fixes on Atol fit and tests for vectorizers
- Loading branch information
Showing
2 changed files
with
113 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
# The following tests only check that the program runs, not what it outputs | ||
|
||
import numpy as np | ||
|
||
from sklearn.base import clone | ||
from sklearn.cluster import KMeans | ||
|
||
from gudhi.representations import (Atol, Landscape, Silhouette, BettiCurve, ComplexPolynomial, \ | ||
TopologicalVector, PersistenceImage, Entropy) | ||
|
||
vectorizers = { | ||
"atol": Atol(quantiser=KMeans(n_clusters=2, random_state=202312, n_init="auto")), | ||
# "betti": BettiCurve(), | ||
} | ||
|
||
diag1 = [np.array([[0., np.inf], | ||
[0., 8.94427191], | ||
[0., 7.28010989], | ||
[0., 6.08276253], | ||
[0., 5.83095189], | ||
[0., 5.38516481], | ||
[0., 5.]]), | ||
np.array([[11., np.inf], | ||
[6.32455532, 6.70820393]]), | ||
np.empty(shape=[0, 2])] | ||
|
||
diag2 = [np.array([[0., np.inf], | ||
[0., 8.94427191], | ||
[0., 7.28010989], | ||
[0., 6.08276253], | ||
[0., 5.83095189], | ||
[0., 5.38516481], | ||
[0., 5.]]), | ||
np.array([[11., np.inf], | ||
[6.32455532, 6.70820393]]), | ||
np.array([[0., np.inf], | ||
[0., 1]])] | ||
|
||
diag3 = [np.empty(shape=[0, 2])] | ||
|
||
|
||
def test_fit(): | ||
print(f" > Testing `fit`.") | ||
for name, vectorizer in vectorizers.items(): | ||
print(f" >> Testing {name}") | ||
clone(vectorizer).fit(X=[diag1[0], diag2[0]]) | ||
|
||
|
||
def test_transform(): | ||
print(f" > Testing `transform`.") | ||
for name, vectorizer in vectorizers.items(): | ||
print(f" >> Testing {name}") | ||
clone(vectorizer).fit_transform(X=[diag1[0], diag2[0], diag3[0]]) | ||
|
||
|
||
def test_transform_empty(): | ||
print(f" > Testing `transform_empty`.") | ||
for name, vectorizer in vectorizers.items(): | ||
print(f" >> Testing {name}") | ||
copy_vec = clone(vectorizer).fit(X=[diag1[0], diag2[0]]) | ||
copy_vec.transform(X=[diag3[0], diag3[0]]) | ||
|
||
|
||
def test_set_output(): | ||
print(f" > Testing `set_output`.") | ||
try: | ||
import pandas | ||
for name, vectorizer in vectorizers.items(): | ||
print(f" >> Testing {name}") | ||
clone(vectorizer).set_output(transform="pandas") | ||
except ImportError: | ||
print("Missing pandas, skipping set_output test") | ||
|
||
|
||
def test_compose(): | ||
print(f" > Testing composition with `sklearn.compose.ColumnTransformer`.") | ||
from sklearn.compose import ColumnTransformer | ||
for name, vectorizer in vectorizers.items(): | ||
print(f" >> Testing {name}") | ||
ct = ColumnTransformer([ | ||
(f"{name}-0", clone(vectorizer), 0), | ||
(f"{name}-1", clone(vectorizer), 1), | ||
(f"{name}-2", clone(vectorizer), 2)] | ||
) | ||
ct.fit_transform(X=[diag1, diag2]) |