-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdatasets.py
133 lines (100 loc) · 3.85 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import json
import os
import numpy as np
import os.path as osp
import pandas as pd
import pickle as pk
import torch_geometric.transforms as T
from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.utils import from_networkx, degree, to_networkx
def get_data_scaler(config):
"""Data normalizer. Assume data are always in [0, 1]."""
if config.data.centered:
# Rescale to [-1, 1]
return lambda x: x * 2. - 1.
else:
return lambda x: x
def get_data_inverse_scaler(config):
"""Inverse data normalizer."""
if config.data.centered:
# Rescale [-1, 1] to [0, 1]
return lambda x: (x + 1.) / 2.
else:
return lambda x: x
def networkx_graphs(dataset):
return [to_networkx(dataset[i], to_undirected=True, remove_self_loops=True) for i in range(len(dataset))]
class StructureDataset(InMemoryDataset):
def __init__(self,
root,
dataset_name,
transform=None,
pre_transform=None,
pre_filter=None):
self.dataset_name = dataset_name
super(StructureDataset, self).__init__(root, transform, pre_transform, pre_filter)
if not os.path.exists(self.raw_paths[0]):
raise ValueError("Without raw files.")
if os.path.exists(self.processed_paths[0]):
self.data, self.slices = torch.load(self.processed_paths[0])
else:
self.process()
@property
def raw_file_names(self):
return [self.dataset_name + '.pkl']
@property
def processed_file_names(self):
return [self.dataset_name + '.pt']
@property
def num_node_features(self):
if self.data.x is None:
return 0
return self.data.x.size(1)
def __repr__(self) -> str:
arg_repr = str(len(self)) if len(self) > 1 else ''
return f'{self.dataset_name}({arg_repr})'
def process(self):
# Read data into 'Data' list
input_path = self.raw_paths[0]
with open(input_path, 'rb') as f:
graphs_nx = pk.load(f)
data_list = [from_networkx(G) for G in graphs_nx]
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
self.data, self.slices = self.collate(data_list)
torch.save((self.data, self.slices), self.processed_paths[0])
@torch.no_grad()
def max_degree(self):
data_list = [self.get(i) for i in range(len(self))]
def graph_max_degree(g_data):
return max(degree(g_data.edge_index[1], num_nodes=g_data.num_nodes))
degree_list = [graph_max_degree(data) for data in data_list]
return int(max(degree_list).item())
def n_node_pmf(self):
node_list = [self.get(i).num_nodes for i in range(len(self))]
n_node_pmf = np.bincount(node_list)
n_node_pmf = n_node_pmf / n_node_pmf.sum()
return n_node_pmf
def get_dataset(config):
"""Create data loaders for training and evaluation.
Args:
config: A ml_collection.ConfigDict parsed from config files.
Returns:
train_ds, eval_ds, test_ds, n_node_pmf
"""
# define data transforms
transform = T.Compose([
# T.ToDense(config.data.max_node),
T.ToDevice(config.device)
])
# Build up data iterators
dataset = StructureDataset(config.data.root, config.data.name, transform=transform)
num_train = int(len(dataset) * config.data.split_ratio)
num_test = len(dataset) - num_train
train_dataset = dataset[:num_train]
eval_dataset = dataset[:num_test]
test_dataset = dataset[num_train:]
n_node_pmf = train_dataset.n_node_pmf()
return train_dataset, eval_dataset, test_dataset, n_node_pmf