-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
324 lines (260 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import time
from math import log10
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from model import DepthNetModel, ColorNetModel
from prepare_data import *
warnings.filterwarnings("ignore")
import h5py
parser = argparse.ArgumentParser(description='Train Super Resolution Models')
parser.add_argument('--is_continue', default=False, type=bool, help='if to continue training from existing network')
opt = parser.parse_args()
param.isContinue = opt.is_continue
def load_networks(isTraining=False):
depth_net = DepthNetModel()
color_net = ColorNetModel()
if param.useGPU:
depth_net.cuda()
color_net.cuda()
depth_optimizer = optim.Adam(depth_net.parameters(), lr=param.alpha, betas=(param.beta1, param.beta2),
eps=param.eps)
color_optimizer = optim.Adam(color_net.parameters(), lr=param.alpha, betas=(param.beta1, param.beta2),
eps=param.eps)
if isTraining:
netFolder = param.trainNet
netName, _, _ = get_folder_content(netFolder, '.tar')
if param.isContinue and netName:
tokens = netName[0].split('-')[1].split('.')[0]
param.startIter = int(tokens)
checkpoint = torch.load(netFolder + '/' + netName[0])
depth_net.load_state_dict(checkpoint['depth_net'])
color_net.load_state_dict(checkpoint['color_net'])
depth_optimizer.load_state_dict(checkpoint['depth_optimizer'])
color_optimizer.load_state_dict(checkpoint['color_optimizer'])
else:
param.isContinue = False
else:
netFolder = param.testNet
checkpoint = torch.load(netFolder + '/Net.tar')
depth_net.load_state_dict(checkpoint['depth_net'])
color_net.load_state_dict(checkpoint['color_net'])
depth_optimizer.load_state_dict(checkpoint['depth_optimizer'])
color_optimizer.load_state_dict(checkpoint['color_optimizer'])
return depth_net, color_net, depth_optimizer, color_optimizer
def read_training_data(fileName, isTraining, it=0):
batchSize = param.batchSize
depthBorder = param.depthBorder
colorBorder = param.colorBorder
useGPU = param.useGPU
f = h5py.File(fileName, "r")
fileInfo = []
for item in f.keys():
fileInfo.append(item)
numItems = len(fileInfo)
maxnum_patches = f[fileInfo[0]].shape[-1]
numImages = floor(maxnum_patches / batchSize) * batchSize
if isTraining:
startInd = it * batchSize % numImages
else:
startInd = 0
batchSize = 1
features = []
reference = []
images = []
refPos = []
for i in range(numItems):
dataName = fileInfo[i]
if dataName == 'FT':
s = f[dataName].shape
features = f[dataName][0:s[0], 0:s[1], 0:s[2], startInd:startInd + batchSize]
features = torch.from_numpy(features)
if useGPU:
features = features.cuda()
if dataName == 'GT':
s = f[dataName].shape
reference = f[dataName][0:s[0], 0:s[1], 0:s[2], startInd:startInd + batchSize]
reference = crop_img(reference, depthBorder + colorBorder)
reference = torch.from_numpy(reference)
if useGPU:
reference = reference.cuda()
if dataName == 'IN':
s = f[dataName].shape
images = f[dataName][0:s[0], 0:s[1], 0:s[2], startInd:startInd + batchSize]
images = torch.from_numpy(images)
if useGPU:
images = images.cuda()
if dataName == 'RP':
refPos = f[dataName][0:2, startInd:startInd + batchSize]
refPos = torch.from_numpy(refPos)
if useGPU:
refPos = refPos.cuda()
f.close()
return images, features, reference, refPos
def prepare_color_features_grad(depth, images, refPos, curFeatures, indNan, dzdx):
delta = 0.01
depthP = depth + delta
featuresP, indNanP = prepare_color_features(depthP, images, refPos)
grad = (featuresP - curFeatures.data.permute(2, 3, 1, 0)) / delta * dzdx
tmp = grad[:, :, 1: - 2, :]
tmp[indNan | indNanP] = 0
grad[:, :, 1:- 2, :] = tmp
dzdx = torch.sum(grad, 2)
return dzdx
def evaluate_system(depth_net, color_net, depth_optimizer=None, color_optimizer=None, criterion=None, images=None,
refPos=None, isTraining=False, depthFeatures=None, reference=None, isTestDuringTraining=False):
# Estimating the depth (section 3.1)
if not isTraining:
print("Estimating depth")
print("----------------")
print("Extracting depth features...", end=' ')
dfTime = time.time()
deltaY = inputView.Y - refPos[0]
deltaX = inputView.X - refPos[1]
depthFeatures = prepare_depth_features(images, deltaY, deltaX)
depthFeatures = np.expand_dims(depthFeatures, axis=3)
depthFeatures = torch.from_numpy(depthFeatures).float()
if param.useGPU:
depthFeatures = depthFeatures.cuda()
print('\b\b\b\bDone in {:.0f} seconds'.format(time.time() - dfTime))
if not isTraining:
print('Evaluating depth network ...', end='')
dTime = time.time()
depthFeatures = depthFeatures.permute(3, 2, 0, 1)
depthFeatures = Variable(depthFeatures, requires_grad=True)
depthRes = depth_net(depthFeatures)
depth = depthRes / (param.origAngRes - 1)
depth = depth.data
depth = depth.permute(2, 3, 1, 0)
if not isTraining:
print('Done in {:.0f} seconds'.format(time.time() - dTime), flush=True)
# Estimating the final color (section 3.2)
if not isTraining:
print("Preparing color features ...", end='')
cfTime = time.time()
images = images.reshape((images.shape[0], images.shape[1], -1))
images = np.expand_dims(images, axis=3)
images = torch.from_numpy(images)
colorFeatures, indNan = prepare_color_features(depth, images, refPos)
if not isTraining:
print('Done in {:.0f} seconds'.format(time.time() - cfTime))
if not isTraining:
print('Evaluating color network ...', end='')
cfTime = time.time()
colorFeatures = colorFeatures.permute(3, 2, 0, 1)
colorFeatures = Variable(colorFeatures, requires_grad=True)
colorRes = color_net(colorFeatures)
finalImg = colorRes
finalImg = finalImg.data.permute(2, 3, 1, 0)
if not isTraining:
print('Done in {:.0f} seconds'.format(time.time() - cfTime))
# Backpropagation
if isTraining and not isTestDuringTraining:
loss = criterion(colorRes, Variable(reference.permute(3, 2, 0, 1))) / reference.cpu().numpy().size
depth_optimizer.zero_grad()
color_optimizer.zero_grad()
if param.useGPU:
loss.backward(torch.ones(10, 3, 36, 36).cuda())
else:
loss.backward(torch.ones(10, 3, 36, 36))
dzdx = colorFeatures.grad
dzdx = dzdx.data.permute(2, 3, 1, 0)
dzdx = prepare_color_features_grad(depth, images, refPos, colorFeatures, indNan, dzdx)
dzdx = torch.unsqueeze(dzdx, 2)
dzdx = dzdx.permute(3, 2, 0, 1)
dzdx = dzdx / (param.origAngRes - 1)
depthRes.backward(dzdx)
color_optimizer.step()
depth_optimizer.step()
return finalImg
def compute_psnr(input, ref):
numPixels = input.numel()
sqrdErr = torch.sum((input[:] - ref[:]) ** 2) / numPixels
errEst = 10 * log10(1 / sqrdErr)
return errEst
def test_during_training(depth_net, color_net, depth_optimizer, color_optimizer, criterion):
sceneNames = param.testNames
fid = open(param.trainNet + '/error.txt', 'a')
numScenes = len(sceneNames)
error = 0
for k in range(numScenes):
# read input data
images, depthFeatures, reference, refPos = read_training_data(sceneNames[k], False)
# evaluate the network and accumulate error
finalImg = evaluate_system(depth_net, color_net, depth_optimizer, color_optimizer, criterion, images, refPos,
True,
depthFeatures, reference, True)
finalImg = crop_img(finalImg, 10)
reference = crop_img(reference, 10)
curError = compute_psnr(finalImg, reference)
error = error + curError / numScenes
print('Current PSNR: %.3f' % error)
fid.write(str(error) + '\n')
fid.close()
return error
def get_test_error(errorFolder):
testError = []
if param.isContinue:
fid = open(errorFolder + '/error.txt', 'r')
for line in fid:
testError.append(float(line))
fid.close()
else:
fid = open(errorFolder + '/error.txt', 'w')
fid.close()
return testError
def train_system(depth_net, color_net, depth_optimizer, color_optimizer, criterion):
testError = get_test_error(param.trainNet)
it = param.startIter + 1
while True:
if it % param.printInfoIter == 0:
print('Performing iteration {}'.format(it))
# main optimization
depth_net.train(True) # Set model to training mode
color_net.train(True)
images, depthFeat, reference, refPos = read_training_data(param.trainingNames[0], True, it)
evaluate_system(depth_net, color_net, depth_optimizer, color_optimizer, criterion, images, refPos, True,
depthFeat,
reference, False)
if it % param.testNetIter == 0:
# save network
_, curNetName, _ = get_folder_content(param.trainNet, '.tar')
state = {
'depth_net': depth_net.state_dict(),
'color_net': color_net.state_dict(),
'depth_optimizer': depth_optimizer.state_dict(),
'color_optimizer': color_optimizer.state_dict()
}
torch.save(state, param.trainNet + '/Net-' + str(it) + '.tar')
# delete network
if curNetName:
os.remove(curNetName[0])
# perform validation
depth_net.train(False) # Set model to validation mode
color_net.train(False)
print('Starting the validation process... ', end='', flush=True)
curError = test_during_training(depth_net, color_net, depth_optimizer, color_optimizer, criterion)
testError.append(curError)
# plt.plot(testError)
# plt.title('Current PSNR: %f' % curError)
# plt.savefig(param.trainNet + '/fig.png')
it += 1
class PairwiseDistance(nn.Module):
def __init__(self, p=2, eps=1e-6):
super(PairwiseDistance, self).__init__()
self.norm = p
self.eps = eps
def forward(self, x1, x2):
return pairwise_distance(x1, x2, self.norm, self.eps)
def pairwise_distance(x1, x2, p=2, eps=1e-6):
diff = torch.abs(x1 - x2)
out = torch.pow(diff + eps, p)
return out
def train():
[depth_net, color_net, depth_optimizer, color_optimizer] = load_networks(True)
criterion = PairwiseDistance()
if param.useGPU:
criterion.cuda()
train_system(depth_net, color_net, depth_optimizer, color_optimizer, criterion)
if __name__ == "__main__":
train()