-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsandbox.cpp
136 lines (110 loc) · 3.86 KB
/
sandbox.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include <cassert>
#include <string>
#include <pgm/pgm.h>
#include <cmath>
#include <iostream>
void test_simulated_annealing()
{
std::cout << "\nsimulated annealing\n";
// bayesnet
pgm::Bayesnet bn;
#ifndef NDEBUG
assert(bn.add_node("A", {"F", "T"}));
assert(bn.add_node("B", {"F", "T"}));
assert(bn.add_node("C", {"F", "T"}));
assert(bn.add_node("D", {"F", "T"}));
assert(bn.add_node("E", {"F", "T"}));
#else
bn.add_node("A", {"F", "T"});
bn.add_node("B", {"F", "T"});
bn.add_node("C", {"F", "T"});
bn.add_node("D", {"F", "T"});
bn.add_node("E", {"F", "T"});
#endif
// dataset
pgm::Dataset dataset;
for (std::size_t i = 0; i < 20; ++i)
dataset.push({{"A", "T"}, {"B", "F"}, {"C", "T"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 15; ++i)
dataset.push({{"A", "T"}, {"B", "F"}, {"C", "F"}, {"D", "F"}, {"E", "F"}});
for (std::size_t i = 0; i < 10; ++i)
dataset.push({{"A", "F"}, {"B", "T"}, {"C", "F"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 15; ++i)
dataset.push({{"A", "F"}, {"B", "F"}, {"C", "T"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 5; ++i)
dataset.push({{"A", "F"}, {"B", "F"}, {"C", "F"}, {"D", "F"}, {"E", "F"}});
for (std::size_t i = 0; i < 2; ++i)
dataset.push({{"A", "T"}, {"B", "T"}, {"C", "F"}, {"D", "T"}, {"E", "F"}});
pgm::SimulatedAnnealing annealing;
annealing.verbose(true);
annealing.init_as_naive_bayes("A");
pgm::Fcll score(dataset, "A");
pgm::SampleEstimate estimate;
annealing(bn, score);
estimate(bn, dataset);
std::cout << bn;
std::size_t correct = 0;
for (std::size_t i = 0; i < dataset.size(); ++i)
{
auto row = dataset[i];
if (row["A"] == bn.infer("A", row))
++correct;
}
std::cout << "Correct : " << correct << "/" << dataset.size() << "\n";
pgm::write_dot(bn, "test_bn.dot");
}
void test_greedy_hill_climbing()
{
std::cout << "\ngreedy hill climbing\n";
// bayesnet
pgm::Bayesnet bn;
#ifndef NDEBUG
assert(bn.add_node("A", {"F", "T"}));
assert(bn.add_node("B", {"F", "T"}));
assert(bn.add_node("C", {"F", "T"}));
assert(bn.add_node("D", {"F", "T"}));
assert(bn.add_node("E", {"F", "T"}));
#else
bn.add_node("A", {"F", "T"});
bn.add_node("B", {"F", "T"});
bn.add_node("C", {"F", "T"});
bn.add_node("D", {"F", "T"});
bn.add_node("E", {"F", "T"});
#endif
// dataset
pgm::Dataset dataset;
for (std::size_t i = 0; i < 20; ++i)
dataset.push({{"A", "T"}, {"B", "F"}, {"C", "T"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 15; ++i)
dataset.push({{"A", "T"}, {"B", "F"}, {"C", "F"}, {"D", "F"}, {"E", "F"}});
for (std::size_t i = 0; i < 10; ++i)
dataset.push({{"A", "F"}, {"B", "T"}, {"C", "F"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 15; ++i)
dataset.push({{"A", "F"}, {"B", "F"}, {"C", "T"}, {"D", "T"}, {"E", "T"}});
for (std::size_t i = 0; i < 5; ++i)
dataset.push({{"A", "F"}, {"B", "F"}, {"C", "F"}, {"D", "F"}, {"E", "F"}});
for (std::size_t i = 0; i < 2; ++i)
dataset.push({{"A", "T"}, {"B", "T"}, {"C", "F"}, {"D", "T"}, {"E", "F"}});
pgm::GreedyHillClimbing hillclimb;
hillclimb.verbose(true);
hillclimb.init_as_naive_bayes("A");
pgm::Fcll score(dataset, "A");
pgm::SampleEstimate estimate;
hillclimb(bn, score);
estimate(bn, dataset);
std::cout << bn;
std::size_t correct = 0;
for (std::size_t i = 0; i < dataset.size(); ++i)
{
auto row = dataset[i];
if (row["A"] == bn.infer("A", row))
++correct;
}
std::cout << "Correct : " << correct << "/" << dataset.size() << "\n";
}
int main()
{
test_simulated_annealing();
test_greedy_hill_climbing();
return 0;
}