-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathball_trackinga.py
138 lines (117 loc) · 4.19 KB
/
ball_trackinga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# USAGE
# python ball_tracking.py --video ball_tracking_example.mp4
# python ball_tracking.py
# import the necessary packages
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
from simple_pid import PID
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
vs = VideoStream(src=0).start()
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
# allow the camera or video file to warm up
time.sleep(2.0)
framecounter = 0
pid = PID(100, 0.1, 0.05, setpoint=0,output_limits=(0,100))
# keep looping
while True:
# grab the current frame
frame = vs.read()
# handle the frame from VideoCapture or VideoStream
frame = frame[1] if args.get("video", False) else frame
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if frame is None:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
ht, wh = frame.shape[:2]
bcen = (int(wh/2),ht)
#print("Width: {}, Height: {}".format(wh,ht))
if True:#(framecounter % 2 == 0):
#print("frame: {}".format(framecounter))
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
output = pid(center[0])
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
cv2.line(frame,center,bcen,(0,0,255),2)
cv2.line(frame,(center[0],ht-1),(bcen[0],ht-1),(0,255,0),2)
cv2.line(frame,(center[0],center[1]),(center[0],bcen[1]),(255,0,0),2)
cv2.putText(frame,str(center[0]-bcen[0]),(int(center[0]+(bcen[0]-center[0])/2),ht-5),cv2.FONT_HERSHEY_PLAIN,1,(0,255,0),2)
cv2.putText(frame,str(output),(10,10),cv2.FONT_HERSHEY_PLAIN,1,(0,0,0),2)
# update the points queue
#//pts.appendleft(center)
# loop over the set of tracked points
#//for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
#//if pts[i - 1] is None or pts[i] is None:
#//continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
#//thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
#//cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
framecounter += 1
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()
# otherwise, release the camera
else:
vs.release()
# close all windows
cv2.destroyAllWindows()