-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatch_2nd_groups_NARPS_gain1st_censBadTP.m
110 lines (75 loc) · 3.06 KB
/
Batch_2nd_groups_NARPS_gain1st_censBadTP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
warning off
addpath /data/BnB2/TOOLS/spm12/
clear all
global defaults,
spm('Defaults','FMRI')
cwd = pwd;
workdir = '/data/BnB_TEMP/Data_NARPS/';
SAMPLE_SELECTION_TYPE = 3;
%1st level
MODELL_1st = 'NARPS_gain1st_censBadTP';
%MODELL_1st = 'NARPS_loss1st';
%2nd level
MODELL = 'NARPS_Gain1st_censBadTP';
%load setup.mat
load setup.mat
% specify number of groups and conditions
groups = 2;
betas = [5:8];
datapath = fullfile(workdir, 'SingleSubjectAnalysis', MODELL_1st);
statpath = fullfile(workdir, 'ANOVA', MODELL);
mkdir(statpath);
if SAMPLE_SELECTION_TYPE == 3
Si = dir(datapath); Si = Si([Si.isdir]); Si = Si(3:end);
for i=1:size(Si,1)
subs{i} = Si(i).name;
end
for i=1:size(subs,2)
xsub{i,1} = subs{i};
xsub{i,2} = mod(str2num(xsub{i,1}(1,5:end)),2);
end
D1 = xsub(find(cell2mat(xsub(:,2))==1),1); % 1 = odd no. = equalIndifference
D2 = xsub(find(cell2mat(xsub(:,2))==0),1); % 0 = even no. = equalRange
for i=1:numel(D1)
subjects{i} = D1{i};
end
for i=1:numel(D2)
subjects2{i} = D2{i};
end
end % SAMPLE_SELECTION_TYPE
for sub= 1:numel(subjects);
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub).scans = {};
for scan = 1:numel(betas)
if betas(scan)<10
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub).scans{scan,1} = ...
fullfile(datapath, subjects{sub}, ['con_000' int2str(betas(scan)) '.nii']);
else
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub).scans{scan,1} = ...
fullfile(datapath, subjects{sub}, [con_00' int2str(betas(scan)) '.nii']);
end
end
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub).conds = [1:numel(betas)];
end
if groups >=2
for sub= 1:numel(subjects2);
sub2= numel(subjects)+sub;
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub2).scans = {};
for scan = 1:numel(betas)
if betas(scan)<10
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub2).scans{scan,1} = ...
fullfile(datapath, subjects2{sub}, ['con_000' int2str(betas(scan)) '.nii']);
else
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub2).scans{scan,1} = ...
fullfile(datapath, subjects2{sub}, ['con_00' int2str(betas(scan)) '.nii']);
end
end
matlabbatch{1}.spm.stats.factorial_design.des.fblock.fsuball.fsubject(sub2).conds = ...
[(numel(betas))+1:2*(numel(betas))];
end
end
matlabbatch{1}.spm.stats.factorial_design.dir{1} = [statpath];
save( [statpath filesep 'setupANOVA.mat'],'matlabbatch');
spm_jobman('run',matlabbatch)
load('estimate.mat');
jobs{1}.stats{1}.fmri_est.spmmat{1} = [statpath filesep 'SPM.mat'];
spm_jobman('run',jobs)