forked from moayad-hsn/Enhancing-energy-trading-between-different-Islanded-Microgrids-A-Reinforcement-Learning-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_PPO.py
273 lines (225 loc) · 10.4 KB
/
main_PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import torch
from torch.optim import Adam
import gym
import time
import Code.core_PPO as core
from Code.utils.logx import EpochLogger
from Code.enviroment import MicrogridEnv
from Code.utils.mpi_pytorch import setup_pytorch_for_mpi, sync_params, mpi_avg_grads
from Code.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
class PPOBuffer:
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
def store(self, obs, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size # buffer has to have room so you can store
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.ptr += 1
def finish_path(self, last_val=0):
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def get(self):
assert self.ptr == self.max_size # buffer has to be full before you can get
self.ptr, self.path_start_idx = 0, 0
# the next two lines implement the advantage normalization trick
adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf)
self.adv_buf = (self.adv_buf - adv_mean) / adv_std
data = dict(obs=self.obs_buf, act=self.act_buf, ret=self.ret_buf,
adv=self.adv_buf, logp=self.logp_buf)
return {k: torch.as_tensor(v, dtype=torch.float32).to('cuda') for k,v in data.items()}
def ppo(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=100, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
target_kl=0.01, logger_kwargs=dict(), save_freq=10):
setup_pytorch_for_mpi()
# Set up logger and save configuration
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
# Random seed
seed += 10000 * proc_id()
torch.cuda.manual_seed(seed)
np.random.seed(seed)
# Instantiate environment
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Create actor-critic module
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
# Sync params across processes
sync_params(ac)
# Count variables
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# Set up experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Set up function for computing PPO policy loss
def compute_loss_pi(data):
obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']
# Policy loss
pi, logp = ac.pi(obs, act)
ratio = torch.exp(logp - logp_old)
clip_adv = torch.clamp(ratio, 1-clip_ratio, 1+clip_ratio) * adv
loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()
# Useful extra info
approx_kl = (logp_old - logp).mean().item()
ent = pi.entropy().mean().item()
clipped = ratio.gt(1+clip_ratio) | ratio.lt(1-clip_ratio)
clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)
return loss_pi, pi_info
# Set up function for computing value loss
def compute_loss_v(data):
obs, ret = data['obs'], data['ret']
return ((ac.v(obs) - ret)**2).mean()
# Set up optimizers for policy and value function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update():
data = buf.get()
pi_l_old, pi_info_old = compute_loss_pi(data)
pi_l_old = pi_l_old.item()
v_l_old = compute_loss_v(data).item()
# Train policy with multiple steps of gradient descent
for i in range(train_pi_iters):
pi_optimizer.zero_grad()
loss_pi, pi_info = compute_loss_pi(data)
kl = mpi_avg(pi_info['kl'])
if kl > 1.5 * target_kl:
logger.log('Early stopping at step %d due to reaching max kl.'%i)
break
loss_pi.backward()
mpi_avg_grads(ac.pi) # average grads across MPI processes
pi_optimizer.step()
logger.store(StopIter=i)
# Value function learning
for i in range(train_v_iters):
vf_optimizer.zero_grad()
loss_v = compute_loss_v(data)
loss_v.backward()
mpi_avg_grads(ac.v) # average grads across MPI processes
vf_optimizer.step()
# Log changes from update
kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(loss_pi.item() - pi_l_old),
DeltaLossV=(loss_v.item() - v_l_old))
# Prepare for interaction with environment
start_time = time.time()
o, ep_ret, ep_len = env.reset(), 0, 0
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32).to('cuda'))#.to('cuda')
next_o, r, d, _ = env.step(a)
ep_ret += r
ep_len += 1
# save and log
buf.store(o, a, r, v, logp)
logger.store(VVals=v)
# Update obs (critical!)
o = next_o
timeout = ep_len == max_ep_len
terminal = d or timeout
epoch_ended = t==local_steps_per_epoch-1
if terminal or epoch_ended:
if epoch_ended and not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
# if trajectory didn't reach terminal state, bootstrap value target
if timeout or epoch_ended:
_, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32).to('cuda'))
else:
v = 0
buf.finish_path(v)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, ep_ret, ep_len = env.reset(), 0, 0
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform PPO update!
update()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HalfCheetah-v2')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=4)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='ppo')
args = parser.parse_args()
#mpi_fork(2) # run parallel code with mpi
from Code.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
env = MicrogridEnv()
'''
o = env.reset()
rewards = []
t=0
while True:
amount = o[1] - (o[2] + o[0])
if amount == 0:
o, r, d, _ = env.step([0,0,0,0])
elif amount>0:
o, r, d, _ = env.step([0,0,amount,10])
else:
o, r, d, _ = env.step([1,0,abs(amount), 19])
rewards.append(r)
t+=1
if t > 100:
break
for i in range(99):
print("Bought, sold, prices, rewards tot_sold", (env.energy_bought[i], env.energy_sold[i], env.prices[i], rewards[i], env.tot[i]))
print("sum rewards: ",sum(rewards))
print("avg reward: ", np.mean(rewards))
'''
ppo(lambda : env, actor_critic=core.MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,
logger_kwargs=logger_kwargs)