-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheat.jl
198 lines (154 loc) · 5.51 KB
/
heat.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
using LinearAlgebra, SparseArrays, Plots
Plots.default(show=true)
N = 1280 # N points intéreurs
a = 0.0 # Borne inférieure
b = 1.0 # Borne supérieure
L = b - a # Longueur du domaine
ϵ = 0.0001 # Cut-cell parameter
h = 1 / (2N + 1) # Pas de maillage
α₁ = 1.0 # Coefficient Robin \alpha à gauche
β₁ = 0.0 # Coefficient Robin \beta à gauche
α₂ = 1.0 # Coefficient Robin \alpha à droite
β₂ = 0.0 # Coefficient Robin \beta à droite
Rₐ = 0.0 # Valeur CL à gauche
Rᵦ = 0.0 # Valeur CL à droite
T = 1.0 # Temps final
Nt = 100000 # Nombre d'incréments
dt = T/Nt # Pas de temps
function solve_heat_cut_cell_implicit(N,a,b,L,ϵ,h,Rₐ,Rᵦ,dt,T,u,f,g,S)
x_f = [a + 2i*h for i in 0:N]
x_f2 = [x_f[1]-2ϵ*L; x_f; x_f[end]+2ϵ*L]
x = [(x_f2[i]+x_f2[i+1])/2 for i in 1:N+2]
A = spzeros(N+2,N+2)
b = zeros(N+2)
A[1,1] = 1.0
A[2,1] = -1/(ϵ*L)
A[2,2] = 1/(ϵ*L) + 1/(h*L+ϵ*L) + 2h*L/dt
A[2,3] = -1/(h*L+ϵ*L)
A[3,2] = -1/(h*L+ϵ*L)
A[3,3] = (1/(h*L+ϵ*L) + 1/(2*h*L) + 2*h*L/dt)
A[3,4] = -1/(2*h*L)
for i in 4:N-1
A[i,i-1] = -1/(2h*L)
A[i,i] = (1/(h*L) + 2*h*L/dt)
A[i,i+1] = -1/(2h*L)
end
A[N,N] = (1/(h*L+ϵ*L) + 1/(2*h*L) + 2*h*L/dt)
A[N,N-1] = -1/(2*h*L)
A[N,N+1] = -1/(h*L+ϵ*L)
A[N+1, N+1] = (1/(ϵ*L) + 1/(h*L+ϵ*L) + 2h*L/dt)
A[N+1, N+2] = -1/(ϵ*L)
A[N+1, N] = -1/(h*L+ϵ*L)
A[N+2,N+2]=1.0
t=0.0
while t<T
b[1] = f(t+dt)
b[2] = 2*ϵ*L*S(x[2],t+dt) + u[1]*2*ϵ*L/dt
b[3] = 2*h*L*S(x[3],t+dt) + u[2]*2*h*L/dt
for i in 4:N-1
b[i] = 2*h*L*S(x[i],t+dt) + u[i]*2*h*L/dt
end
b[N] = 2*h*L*S(x[N-1],t+dt) + u[N]*2*h*L/dt
b[N+1] = 2*ϵ*L*S(x[N],t+dt) + u[N+1]*2*ϵ*L/dt
b[N+2] = g(t+dt)
# Solve
u_new = A \ b
# Update
u = u_new
t+=dt
end
u_ω = u[2:end-1]
u_γ = [u[1];u[end]]
return u_ω, u_γ, x
end
function solve_heat_cut_cell_crank(N,a,b,L,ϵ,h,Rₐ,Rᵦ,dt,T,u,f,g,S)
x_f = [a + 2i*h for i in 0:N]
x_f2 = [x_f[1]-2ϵ*L; x_f; x_f[end]+2ϵ*L]
x = [(x_f2[i]+x_f2[i+1])/2 for i in 1:N+2]
A = spzeros(N+2,N+2)
b = zeros(N+2)
A[1,1] = 1.0
A[2,1] = -1/(ϵ*L)*0.5
A[2,2] = 1/(ϵ*L)*0.5 + 1/(h*L+ϵ*L)*0.5 + 2h*L/dt
A[2,3] = -1/(h*L+ϵ*L)*0.5
A[3,2] = -1/(h*L+ϵ*L)*0.5
A[3,3] = (1/(h*L+ϵ*L)*0.5 + 1/(2*h*L)*0.5 + 2*h*L/dt)
A[3,4] = -1/(2*h*L)*0.5
for i in 4:N-1
A[i,i-1] = -1/(2h*L)*0.5
A[i,i] = (1/(h*L)*0.5 + 2*h*L/dt)
A[i,i+1] = -1/(2h*L)*0.5
end
A[N,N] = (1/(h*L+ϵ*L)*0.5 + 1/(2*h*L)*0.5 + 2*h*L/dt)
A[N,N-1] = -1/(2*h*L)*0.5
A[N,N+1] = -1/(h*L+ϵ*L)*0.5
A[N+1, N+1] = (1/(ϵ*L)*0.5 + 1/(h*L+ϵ*L)*0.5 + 2h*L/dt)
A[N+1, N+2] = -1/(ϵ*L)*0.5
A[N+1, N] = -1/(h*L+ϵ*L)*0.5
A[N+2,N+2]=1.0
t=0.0
while t<T
b[1] = 0.5*(f(t) + f(t+dt))
b[2] = 0.5*(2*ϵ*L*S(x[2],t) + 2*ϵ*L*S(x[2],t+dt)) + u[1]*(2*ϵ*L/dt - 0.5*1/(h*L+ϵ*L) - 0.5*1/(ϵ*L)) + u[2]*0.5*1/(h*L+ϵ*L) + u[1]*0.5*1/(ϵ*L)
b[3] = 0.5*(2*h*L*S(x[3],t) + 2*h*L*S(x[3],t+dt)) + u[2]*(2*h*L/dt - 0.5*1/(2*h*L) - 0.5*1/(h*L+ϵ*L)) + u[3]*0.5*1/(2*h*L) + u[1]*0.5*1/(h*L+ϵ*L)
for i in 4:N-1
b[i] = 0.5*(2*h*L*S(x[i],t)+2*h*L*S(x[i],t+dt)) + u[i]*(2*h*L/dt-0.5*2/(2*h*L)) + u[i-1]*0.5*1/(2*h*L) + u[i+1]*0.5*1/(2*h*L)
end
b[N] = 0.5*(2*h*L*S(x[N-1],t) + 2*h*L*S(x[N-1],t+dt)) + u[N]*(2*h*L/dt - 0.5*1/(2*h*L) - 0.5*1/(h*L+ϵ*L)) + u[N-1]*0.5*1/(2*h*L) + u[N+1]*0.5*1/(h*L+ϵ*L)
b[N+1] = 0.5*(2*ϵ*L*S(x[N],t) + 2*ϵ*L*S(x[N],t+dt)) + u[N+1]*(2*ϵ*L/dt - 0.5*1/(ϵ*L) - 0.5*1/(h*L+ϵ*L)) + u[N]*0.5*1/(h*L+ϵ*L) + u[N+2]*0.5*1/(ϵ*L)
b[N+2] = 0.5*(g(t) + g(t+dt))
# Solve
u_new = A \ b
# Update
u = u_new
t+=dt
end
u_ω = u[2:end-1]
u_γ = [u[1];u[end]]
return u_ω, u_γ, x
end
x_f = [a + 2i*h for i in 0:N]
x_f2 = [x_f[1]-2ϵ*L; x_f; x_f[end]+2ϵ*L]
x = [(x_f2[i]+x_f2[i+1])/2 for i in 1:N+2]
# Exact Solution
exact_heat(x,t) = exp(-t)*cos(x)
exact_heat_ = [exact_heat(x_,T) for x_ in x[2:end-1]]
# Boundary values
f(t) = exp(-t)
g(t) = exp(-t) * cos(1)
# Source Value
S(x,t) = 0.0
# Initialisation
u = [cos(x_) for x_ in x]
# Solve
u_ω, u_γ, x = solve_heat_cut_cell_implicit(N,a,b,L,ϵ,h,Rₐ,Rᵦ,dt,T,u,f,g,S)
u_ω_c, u_γ_c, x_c = solve_heat_cut_cell_crank(N,a,b,L,ϵ,h,Rₐ,Rᵦ,dt,T,u,f,g,S)
# Plot
plot(x[2:end-1], u_ω, title="Heat - u_ω", label = "Implicit")
plot!(x[2:end-1],u_ω_c, label="Crank")
plot!(x[2:end-1],exact_heat_, label="Analytical")
readline()
# Plot
plot([x[1];x[end]], u_γ, title="Heat - u_γ", label = "u_γ - Numerical - Implicit", marker=:circle)
plot!([x[1];x[end]], u_γ_c, label = "u_γ - Numerical - Crank", marker=:circle)
plot!([x[1];x[end]], [f(T);g(T)], label = "u_γ - Analytical")
readline()
function compute_norm(error, ϵ, h, L)
l2 = sqrt(sum((error[2:end-1]).^2*(2*h*L)) + error[1]^2*(2*ϵ*L) + error[end]^2*(2*ϵ*L)/(2*2*ϵ*L + 2*h*L*(N-2)))
return l2
end
# Plot Error
error = u_ω - exact_heat_
error_c = u_ω_c - exact_heat_
plot(x[2:end-1], error, label="Implicit")
plot!(x[2:end-1], error_c, label="Crank")
readline()
# Print
println("L2 Norm")
l2 = compute_norm(error, ϵ, h, L)
l2_c = compute_norm(error_c, ϵ, h, L)
println("L2 Norm - Implicit : ", l2)
println("L2 Norm - Crank : ",l2_c)
println("Max Norm")
println("Max Norm - Implicit : ", maximum(abs.(error)))
println("Max Norm - Crank : ", maximum(abs.(error_c)))