-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanovna.py
executable file
·657 lines (554 loc) · 20.9 KB
/
nanovna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#!/usr/bin/env python3
import serial, tty
import numpy as np
import pylab as pl
import struct
from serial.tools import list_ports
import time
VIDPIDs = set([(0x0483, 0x5740), (0x04b4,0x0008)]);
# Get nanovna device automatically
def getport() -> str:
device_list = list_ports.comports()
for device in device_list:
if (device.vid, device.pid) in VIDPIDs:
return device.device
raise OSError("device not found")
def getport_all() -> str:
vnas = []
device_list = list_ports.comports()
for device in device_list:
if (device.vid, device.pid) in VIDPIDs:
vnas.append(device.device)
if vnas:
return vnas
else:
raise OSError("device not found")
def _unpackSigned32(b):
return int.from_bytes(b[0:4], 'little', signed=True)
def _unpackUnsigned16(b):
return int.from_bytes(b[0:2], 'little', signed=False)
REF_LEVEL = (1<<9)
class NanoVNA:
def __init__(self, dev = None):
self.dev = dev or getport()
self.serial = None
self._frequencies = None
self.points = 101
@property
def frequencies(self):
return self._frequencies
def set_frequencies(self, start = 1e6, stop = 900e6, points = None):
if points:
self.points = points
self._frequencies = np.linspace(start, stop, self.points)
def open(self):
if self.serial is None:
self.serial = serial.Serial(self.dev)
def close(self):
if self.serial:
self.serial.close()
self.serial = None
def send_command(self, cmd):
self.open()
self.serial.write(cmd.encode())
self.serial.readline() # discard empty line
def set_sweep(self, start, stop):
if start is not None:
self.send_command("sweep start %d\r" % start)
if stop is not None:
self.send_command("sweep stop %d\r" % stop)
def set_frequency(self, freq):
if freq is not None:
self.send_command("freq %d\r" % freq)
def set_port(self, port):
if port is not None:
self.send_command("port %d\r" % port)
def set_gain(self, gain):
if gain is not None:
self.send_command("gain %d %d\r" % (gain, gain))
def set_offset(self, offset):
if offset is not None:
self.send_command("offset %d\r" % offset)
def set_strength(self, strength):
if strength is not None:
self.send_command("power %d\r" % strength)
def set_filter(self, filter):
self.filter = filter
def fetch_data(self):
result = ''
line = ''
while True:
c = self.serial.read().decode('utf-8')
if c == chr(13):
next # ignore CR
line += c
if c == chr(10):
result += line
line = ''
next
if line.endswith('ch>'):
# stop on prompt
break
return result
def fetch_buffer(self, freq = None, buffer = 0):
self.send_command("dump %d\r" % buffer)
data = self.fetch_data()
x = []
for line in data.split('\n'):
if line:
x.extend([int(d, 16) for d in line.strip().split(' ')])
return np.array(x, dtype=np.int16)
def fetch_rawwave(self, freq = None):
if freq:
self.set_frequency(freq)
time.sleep(0.05)
self.send_command("dump 0\r")
data = self.fetch_data()
x = []
for line in data.split('\n'):
if line:
x.extend([int(d, 16) for d in line.strip().split(' ')])
return np.array(x[0::2], dtype=np.int16), np.array(x[1::2], dtype=np.int16)
def fetch_array(self, sel):
self.send_command("data %d\r" % sel)
data = self.fetch_data()
x = []
for line in data.split('\n'):
if line:
x.extend([float(d) for d in line.strip().split(' ')])
return np.array(x[0::2]) + np.array(x[1::2]) * 1j
def fetch_gamma(self, freq = None):
if freq:
self.set_frequency(freq)
self.send_command("gamma\r")
data = self.serial.readline()
d = data.strip().split(' ')
return (int(d[0])+int(d[1])*1.j)/REF_LEVEL
def reflect_coeff_from_rawwave(self, freq = None):
ref, samp = self.fetch_rawwave(freq)
refh = signal.hilbert(ref)
#x = np.correlate(refh, samp) / np.correlate(refh, refh)
#return x[0]
#return np.sum(refh*samp / np.abs(refh) / REF_LEVEL)
return np.average(refh*samp / np.abs(refh) / REF_LEVEL)
reflect_coeff = reflect_coeff_from_rawwave
gamma = reflect_coeff_from_rawwave
#gamma = fetch_gamma
coefficient = reflect_coeff
def resume(self):
self.send_command("resume\r")
def pause(self):
self.send_command("pause\r")
def scan_gamma0(self, port = None):
self.set_port(port)
return np.vectorize(self.gamma)(self.frequencies)
def scan_gamma(self, port = None):
self.set_port(port)
return np.vectorize(self.fetch_gamma)(self.frequencies)
def data(self, array = 0):
self.send_command("data %d\r" % array)
data = self.fetch_data()
x = []
for line in data.split('\n'):
if line:
d = line.strip().split(' ')
x.append(float(d[0])+float(d[1])*1.j)
return np.array(x)
def fetch_frequencies(self):
self.send_command("frequencies\r")
data = self.fetch_data()
x = []
for line in data.split('\n'):
if line:
x.append(float(line))
self._frequencies = np.array(x)
def send_scan(self, start = 1e6, stop = 900e6, points = None):
if points:
self.send_command("scan %d %d %d\r"%(start, stop, points))
else:
self.send_command("scan %d %d\r"%(start, stop))
def scan(self):
segment_length = 101
array0 = []
array1 = []
if self._frequencies is None:
self.fetch_frequencies()
freqs = self._frequencies
while len(freqs) > 0:
seg_start = freqs[0]
seg_stop = freqs[segment_length-1] if len(freqs) >= segment_length else freqs[-1]
length = segment_length if len(freqs) >= segment_length else len(freqs)
#print((seg_start, seg_stop, length))
self.send_scan(seg_start, seg_stop, length)
array0.extend(self.data(0))
array1.extend(self.data(1))
freqs = freqs[segment_length:]
self.resume()
return (array0, array1)
def capture(self):
from PIL import Image
self.send_command("capture\r")
b = self.serial.read(320 * 240 * 2)
x = struct.unpack(">76800H", b)
# convert pixel format from 565(RGB) to 8888(RGBA)
arr = np.array(x, dtype=np.uint32)
arr = 0xFF000000 + ((arr & 0xF800) >> 8) + ((arr & 0x07E0) << 5) + ((arr & 0x001F) << 19)
return Image.frombuffer('RGBA', (320, 240), arr, 'raw', 'RGBA', 0, 1)
def logmag(self, x):
print(x)
pl.grid(True)
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, 20*np.log10(np.abs(x)))
def linmag(self, x):
pl.grid(True)
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, np.abs(x))
def phase(self, x, unwrap=False):
pl.grid(True)
a = np.angle(x)
if unwrap:
a = np.unwrap(a)
else:
pl.ylim((-180,180))
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, np.rad2deg(a))
def delay(self, x):
pl.grid(True)
delay = -np.unwrap(np.angle(x))/ (2*np.pi*np.array(self.frequencies))
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, delay)
def groupdelay(self, x):
pl.grid(True)
gd = np.convolve(np.unwrap(np.angle(x)), [1,-1], mode='same')
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, gd)
def vswr(self, x):
pl.grid(True)
vswr = (1+np.abs(x))/(1-np.abs(x))
pl.xlim(self.frequencies[0], self.frequencies[-1])
pl.plot(self.frequencies, vswr)
def polar(self, x):
ax = pl.subplot(111, projection='polar')
ax.grid(True)
ax.set_ylim((0,1))
ax.plot(np.angle(x), np.abs(x))
def tdr(self, x):
pl.grid(True)
window = np.blackman(len(x))
NFFT = 256
td = np.abs(np.fft.ifft(window * x, NFFT))
time = 1 / (self.frequencies[1] - self.frequencies[0])
t_axis = np.linspace(0, time, NFFT)
pl.plot(t_axis, td)
pl.xlim(0, time)
pl.xlabel("time (s)")
pl.ylabel("magnitude")
def smithd3(self, x):
import mpld3
import twoport as tp
fig, ax = pl.subplots()
sc = tp.SmithChart(show_cursor=True, labels=True, ax=ax)
sc.plot_s_param(a)
mpld3.display(fig)
def skrf_network(self, x):
import skrf as sk
n = sk.Network()
n.frequency = sk.Frequency.from_f(self.frequencies / 1e6, unit='mhz')
n.s = x
return n
def smith(self, x):
n = self.skrf_network(x)
n.plot_s_smith()
return n
class NanoVNAV2(NanoVNA):
def __init__(self, dev = None):
self.dev = dev or getport()
self.serial = None
self._frequencies = None
self.points = 101
self.sweepStartHz = 200e6
self.sweepStopHz = 1e9
self.sweepData = [[0.,0.]] * self.points
def set_frequencies(self, start = 1e6, stop = 900e6, points = None):
if points:
self.points = points
self.sweepData = [[0.,0.]] * self.points
self._frequencies = np.linspace(start, stop, self.points)
def set_frequencies_by_list(self, lst=[1e6]):
self.points = len(lst)
self.sweepData = [[0.,0.]] * self.points
self._frequencies = np.array(lst)
def open(self):
if self.serial is None:
self.serial = serial.Serial(self.dev)
tty.setraw(self.serial.fd)
self.serial.timeout = 3
def send_command(self, cmd):
raise NotImplementedError("unimplemented: send_command")
def _updateSweep(self):
self.open()
sweepStepHz = 0.
if self.points > 1:
sweepStepHz = (self.sweepStopHz - self.sweepStartHz) / (self.points - 1)
cmd = b"\x23\x00" + int.to_bytes(int(self.sweepStartHz), 8, 'little')
cmd += b"\x23\x10" + int.to_bytes(int(sweepStepHz), 8, 'little')
cmd += b"\x21\x20" + int.to_bytes(int(self.points), 2, 'little')
self.serial.write(cmd)
def set_sweep(self, start, stop, points = 101):
if start is not None:
self.sweepStartHz = start
if stop is not None:
self.sweepStopHz = stop
if points is not None:
self.points = points
self._updateSweep()
def set_frequency(self, freq):
if freq is not None:
self.sweepStartHz = freq
self.sweepStopHz = freq
self._updateSweep()
def set_port(self, port):
pass
def set_gain(self, gain):
pass
def set_offset(self, offset):
pass
def set_strength(self, strength):
pass
def set_filter(self, filter):
self.filter = filter
def fetch_data(self):
raise NotImplementedError()
def fetch_buffer(self, freq = None, buffer = 0):
raise NotImplementedError()
def fetch_rawwave(self, freq = None):
raise NotImplementedError()
def fetch_array(self, sel):
if sel == 0:
self._scan()
x = [item[sel] for item in self.sweepData]
return np.array(x)
def fetch_gamma(self, freq = None):
if freq:
self.set_frequency(freq)
self._scan()
return self.sweepData[0][0]
def reflect_coeff_from_rawwave(self, freq = None):
ref, samp = self.fetch_rawwave(freq)
refh = signal.hilbert(ref)
#x = np.correlate(refh, samp) / np.correlate(refh, refh)
#return x[0]
#return np.sum(refh*samp / np.abs(refh) / REF_LEVEL)
return np.average(refh*samp / np.abs(refh) / REF_LEVEL)
reflect_coeff = reflect_coeff_from_rawwave
gamma = reflect_coeff_from_rawwave
#gamma = fetch_gamma
coefficient = reflect_coeff
def resume(self):
self.send_command("resume\r")
def pause(self):
self.send_command("pause\r")
def scan_gamma0(self, port = None):
self.set_port(port)
return np.vectorize(self.gamma)(self.frequencies)
def scan_gamma(self, port = None):
self.set_port(port)
return np.vectorize(self.fetch_gamma)(self.frequencies)
def data(self, array = 0):
# seems to do the same thing as fetch_array?
return self.fetch_array(array)
def fetch_frequencies(self):
self._frequencies = np.linspace(self.sweepStartHz, self.sweepStopHz, self.points)
def send_scan(self, start = 1e6, stop = 900e6, points = None):
self.set_sweep(start, stop, points)
self._scan()
def _scan(self):
# reset protocol to known state
self.serial.write([0,0,0,0,0,0,0,0])
# cmd: write register 0x30 to clear FIFO
self.serial.write([0x20, 0x30, 0x00])
# cmd: read FIFO, addr 0x30
self.serial.write([0x18, 0x30, self.points])
# each value is 32 bytes
nBytes = self.points * 32
# serial .read() will wait for exactly nBytes bytes
# starttime = time.time()
arr = self.serial.read(nBytes)
# print(time.time()-starttime)
if nBytes != len(arr):
print("expected %d bytes, got %d" % (nBytes, len(arr)))
# logger.error("expected %d bytes, got %d" % (nBytes, len(arr)))
return []
for i in range(self.points):
b = arr[i*32:]
fwd = complex(_unpackSigned32(b[0:]), _unpackSigned32(b[4:]))
refl = complex(_unpackSigned32(b[8:]), _unpackSigned32(b[12:]))
thru = complex(_unpackSigned32(b[16:]), _unpackSigned32(b[20:]))
freqIndex = _unpackUnsigned16(b[24:])
#print('freqIndex', freqIndex)
self.sweepData[freqIndex] = (refl / fwd, thru / fwd)
def scan(self):
if self._frequencies is None:
self.fetch_frequencies()
return (self.data(0), self.data(1))
def capture(self):
from PIL import Image
self.open()
# reset protocol to known state
self.serial.write([0,0,0,0,0,0,0,0])
self.serial.write([0x20, 0xee, 0x00])
meta = self.serial.read(2 + 2 + 1)
print(meta)
self.serial.timeout = 10
width, height, pixel = struct.unpack('<HHB', meta)
b = self.serial.read(width * height * 2)
x = struct.unpack(">" + str(width * height) + "H", b)
# convert pixel format from 565(RGB) to 8888(RGBA)
arr = np.array(x, dtype=np.uint32)
arr = 0xFF000000 + ((arr & 0xF800) >> 8) + ((arr & 0x07E0) << 5) + ((arr & 0x001F) << 19)
return Image.frombuffer('RGBA', (width, height), arr, 'raw', 'RGBA', 0, 1)
def plot_sample0(samp):
N = min(len(samp), 256)
fs = 48000
pl.subplot(211)
pl.grid()
pl.plot(samp)
pl.subplot(212)
pl.grid()
#pl.ylim((-50, 50))
pl.psd(samp, N, window = pl.blackman(N), Fs=fs)
def plot_sample(ref, samp):
N = min(len(samp), 256)
fs = 48000
pl.subplot(211)
pl.grid()
pl.plot(ref)
pl.plot(samp)
pl.subplot(212)
pl.grid()
#pl.ylim((-50, 50))
pl.psd(ref, N, window = pl.blackman(N), Fs=fs)
pl.psd(samp, N, window = pl.blackman(N), Fs=fs)
if __name__ == '__main__':
from optparse import OptionParser
parser = OptionParser(usage="%prog: [options]")
parser.add_option("-r", "--raw", dest="rawwave",
type="int", default=None,
help="plot raw waveform", metavar="RAWWAVE")
parser.add_option("-p", "--plot", dest="plot",
action="store_true", default=False,
help="plot rectanglar", metavar="PLOT")
parser.add_option("-s", "--smith", dest="smith",
action="store_true", default=False,
help="plot smith chart", metavar="SMITH")
parser.add_option("-L", "--polar", dest="polar",
action="store_true", default=False,
help="plot polar chart", metavar="POLAR")
parser.add_option("-D", "--delay", dest="delay",
action="store_true", default=False,
help="plot delay", metavar="DELAY")
parser.add_option("-G", "--groupdelay", dest="groupdelay",
action="store_true", default=False,
help="plot groupdelay", metavar="GROUPDELAY")
parser.add_option("-W", "--vswr", dest="vswr",
action="store_true", default=False,
help="plot VSWR", metavar="VSWR")
parser.add_option("-H", "--phase", dest="phase",
action="store_true", default=False,
help="plot phase", metavar="PHASE")
parser.add_option("-U", "--unwrapphase", dest="unwrapphase",
action="store_true", default=False,
help="plot unwrapped phase", metavar="UNWRAPPHASE")
parser.add_option("-T", "--timedomain", dest="tdr",
action="store_true", default=False,
help="plot TDR", metavar="TDR")
parser.add_option("-c", "--scan", dest="scan",
action="store_true", default=False,
help="scan by script", metavar="SCAN")
parser.add_option("-S", "--start", dest="start",
type="float", default=1e6,
help="start frequency", metavar="START")
parser.add_option("-E", "--stop", dest="stop",
type="float", default=900e6,
help="stop frequency", metavar="STOP")
parser.add_option("-N", "--points", dest="points",
type="int", default=101,
help="scan points", metavar="POINTS")
parser.add_option("-P", "--port", type="int", dest="port",
help="port", metavar="PORT")
parser.add_option("-d", "--dev", dest="device",
help="device node", metavar="DEV")
parser.add_option("-v", "--verbose",
action="store_true", dest="verbose", default=False,
help="verbose output")
parser.add_option("-C", "--capture", dest="capture",
help="capture current display to FILE", metavar="FILE")
parser.add_option("-e", dest="command", action="append",
help="send raw command", metavar="COMMAND")
parser.add_option("-o", dest="save",
help="write touch stone file", metavar="SAVE")
(opt, args) = parser.parse_args()
nv = NanoVNAV2(opt.device or getport())
if opt.command:
for c in opt.command:
nv.send_command(c + "\r")
if opt.capture:
print("capturing...")
img = nv.capture()
img.save(opt.capture)
exit(0)
nv.set_port(opt.port)
if opt.rawwave is not None:
samp = nv.fetch_buffer(buffer = opt.rawwave)
print(len(samp))
if opt.rawwave == 1 or opt.rawwave == 2:
plot_sample0(samp)
print(np.average(samp))
else:
plot_sample(samp[0::2], samp[1::2])
print(np.average(samp[0::2]))
print(np.average(samp[1::2]))
print(np.average(samp[0::2] * samp[1::2]))
pl.show()
exit(0)
if opt.start or opt.stop or opt.points:
nv.set_frequencies(opt.start, opt.stop, opt.points)
plot = opt.phase or opt.plot or opt.vswr or opt.delay or opt.groupdelay or opt.smith or opt.unwrapphase or opt.polar or opt.tdr
if plot or opt.save:
p = int(opt.port) if opt.port else 0
if opt.scan or opt.points > 101:
s = nv.scan()
s = s[p]
else:
if opt.start or opt.stop:
nv.set_sweep(opt.start, opt.stop, opt.points)
nv.fetch_frequencies()
s = nv.data(p)
nv.fetch_frequencies()
if opt.start or opt.stop:
nv.set_sweep(opt.start, opt.stop, opt.points)
s = nv.scan()
s = s[p]
if opt.save:
n = nv.skrf_network(s)
n.write_touchstone(opt.save)
if opt.smith:
nv.smith(s)
if opt.polar:
nv.polar(s)
if opt.plot:
nv.logmag(s)
if opt.phase:
nv.phase(s)
if opt.unwrapphase:
nv.phase(s, unwrap=True)
if opt.delay:
nv.delay(s)
if opt.groupdelay:
nv.groupdelay(s)
if opt.vswr:
nv.vswr(s)
if opt.tdr:
nv.tdr(s)
if plot:
pl.show()