-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlanguage_guidance.py
330 lines (276 loc) · 12.1 KB
/
language_guidance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import clip
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
class LanguageGuide(torch.nn.Module):
def __init__(self,
device,
language_model='clip',
activation_iter=0,
language_shift=1,
use_pseudoclasses=True,
pseudoclass_topk=5,
sample_level=False,
distill_dir='forward',
T=1):
super(LanguageGuide, self).__init__()
self.language_model = language_model_select(language_model, device)
self.activation_iter = activation_iter
self.language_shift = language_shift
self.iter_count = 0
self.use_pseudoclasses = use_pseudoclasses
self.pseudoclass_topk = pseudoclass_topk
self.sample_level = sample_level
self.distill_dir = distill_dir
self.language_embeds = None
self.T = T
def regularize(self, batch, labels, sample_indices=None):
assert self.language_embeds is not None, 'Please precompute language embeddings first!'
self.iter_count += 1
if self.iter_count >= self.activation_iter:
if isinstance(self.language_embeds, dict):
language_embeds = torch.stack([
self.language_embeds[idx]
for idx in labels.detach().cpu().numpy()
])
language_embeds = language_embeds.unsqueeze(1).to(batch.device)
else:
indexer = sample_indices if self.sample_level else labels
language_embeds = self.language_embeds[indexer]
bsame_labels = (labels.T == labels.view(-1, 1)).to(batch.device).T
language_sims = self.compute_language_sims(language_embeds)
language_sims = language_sims.mean(dim=-1)
language_sims += self.language_shift
maskval = 1 + self.language_shift
batch_sims = batch.mm(batch.T)
if self.distill_dir == 'forward':
return kl_div(batch_sims,
language_sims.detach(),
mask=bsame_labels,
maskval=maskval,
T=self.T)
else:
return kl_div(language_sims.detach(),
batch_sims,
mask=bsame_labels,
maskval=maskval,
T=self.T)
return 0.
def precompute_language_embeds(self,
dataloader,
device,
pseudoclass_generator=None):
if self.use_pseudoclasses:
self.classlevel_relabels, self.sample_relabels = relabel(
pseudoclass_generator,
dataloader,
device,
topk=self.pseudoclass_topk)
self.language_embeds = reembed_in_language(
self.language_model, self.classlevel_relabels
if not self.sample_level else self.sample_relabels, device)
self.language_embeds = self.language_embeds.to(device)
if not self.sample_level:
self.language_embeds = self.language_embeds.permute(1, 0, 2)
print('Retrieved {} language embeddings!'.format(
self.language_embeds.shape[0] * self.language_embeds.shape[1]))
else:
self.language_embeds = reembed_dict_in_language(
self.language_model, dataloader.dataset.language_conversion,
device)
print('Retrieved {} language embeddings!'.format(
len(self.language_embeds)))
def compute_language_sims(self, language_embeds):
language_sims = torch.einsum(
'abe,cbe->acb',
torch.nn.functional.normalize(language_embeds, dim=-1),
torch.nn.functional.normalize(language_embeds, dim=-1))
language_sims = language_sims.reshape(*language_sims.shape[:2], -1)
return language_sims
def kl_div(A, B, mask=None, maskval=0., T=1):
if mask is not None:
log_p_A = F.log_softmax(A.masked_fill(mask, maskval) / T, dim=-1)
p_B = F.softmax(B.masked_fill(mask, maskval) / T, dim=-1)
else:
log_p_A = F.log_softmax(A / T, dim=-1)
p_B = F.softmax(B / T, dim=-1)
kl_div = F.kl_div(log_p_A, p_B, reduction='sum') * (T**2) / A.shape[0]
return kl_div
def language_model_select(model, device, primer='a photo of a {}'):
if model not in ['clip', 'bert', 'roberta_l']:
raise NotImplementedError(
'Language model {} not available!'.format(model))
if model == 'clip':
return ClipLanguageModel(primer, device)
if model == 'bert':
return BertLanguageModel(primer)
if model == 'roberta_l':
return RobertaLargeLanguageModel(primer)
class ClipLanguageModel(torch.nn.Module):
def __init__(self, primer, device):
super(ClipLanguageModel, self).__init__()
self.name = 'CLIP-Language'
self.primer = primer
self.tokenizer = clip.tokenize
self.model, _ = clip.load("ViT-B/32", device=device, jit=False)
self.out_dim = 512
def forward(self, text, device, skip_primer=False):
if skip_primer:
primed_tokens = text
else:
primed_tokens = [self.primer.format(x) for x in text]
primed_tokens = self.tokenizer(primed_tokens)
language_embeds = self.model.encode_text(primed_tokens.to(device))
return language_embeds.type(torch.float32)
class RobertaLargeLanguageModel(torch.nn.Module):
def __init__(self, primer, **kwargs):
super(RobertaLargeLanguageModel, self).__init__()
from transformers import RobertaTokenizer, RobertaModel
self.name = 'Roberta-Large'
self.primer = primer
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
self.model = RobertaModel.from_pretrained('roberta-large')
self.out_dim = 1024
def forward(self, text, device, skip_primer=False):
if skip_primer:
primed_tokens = text
else:
primed_tokens = [self.primer.format(x) for x in text]
primed_tokens = self.tokenizer(primed_tokens,
return_tensors='pt',
padding=True,
truncation=True).to(device)
language_embeds = self.model(**primed_tokens).pooler_output
return language_embeds.type(torch.float32)
class BertLanguageModel(torch.nn.Module):
def __init__(self, primer, **kwargs):
super(BertLanguageModel, self).__init__()
from transformers import BertTokenizer, BertModel
self.name = 'BERT'
self.primer = primer
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
self.out_dim = 1024
def forward(self, text, device, skip_primer=False):
if skip_primer:
primed_tokens = text
else:
primed_tokens = [self.primer.format(x) for x in text]
primed_tokens = self.tokenizer(primed_tokens,
return_tensors='pt',
padding=True,
truncation=True).to(device)
language_embeds = self.model(**primed_tokens).pooler_output
return language_embeds.type(torch.float32)
#############################################################################
def adjust_text(input_text, maxlen=30):
text = ''
count = 0
for p, c in enumerate(input_text.split(' ')):
if p:
text += ' '
if count > maxlen and len(text) > 0:
text += '\n'
count -= maxlen
text += c
count += len(c)
return text
def reembed_dict_in_language(language_model, label_dict, device):
print('Getting language embeddings...')
sorted_values = list(label_dict.values())
unique_labs = {key: None for key in np.unique(sorted_values)}
reembed_collect = []
with torch.no_grad():
language_embeds = language_model(list(unique_labs.keys()), device,
False).cpu()
unique_labs = {
key: language_embed
for key, language_embed in zip(unique_labs.keys(), language_embeds)
}
return {key: unique_labs[value] for key, value in label_dict.items()}
def reembed_in_language(language_model, reassigns_topk, device):
print('Getting language embeddings...')
unique_labs = {key: None for key in np.unique(reassigns_topk)}
reembed_collect = []
_ = language_model.eval()
with torch.no_grad():
language_embeds = language_model(list(unique_labs.keys()), device,
False).cpu()
unique_labs = {
key: language_embed
for key, language_embed in zip(unique_labs.keys(), language_embeds)
}
def match(inp):
return [unique_labs[i] for i in inp]
reembed_collect = list(map(match, reassigns_topk))
return torch.stack([torch.stack(x) for x in reembed_collect])
def relabel(model,
dataloader,
device,
datapath='',
full_label=False,
topk=5,
overlap=True):
was_training = model.training
_ = model.eval()
crop_size = dataloader.dataset.crop_size
base_size = dataloader.dataset.base_size
dataloader.dataset.crop_size = [299, 299]
dataloader.dataset.base_size = 320
dataloader.dataset.provide_transforms()
if overlap:
assert topk > 1, 'If you want label overlap, please set topk > 1!'
with open(datapath + 'imagenet_synsets.txt', 'r') as f:
imagenet_synsets = f.readlines()
imagenet_classes = [x.strip() for x in imagenet_synsets]
imagenet_splits = [line.split(' ') for line in imagenet_synsets]
key_to_classname = {
spl[0]: ' '.join(spl[1:]).replace('\n', '')
for spl in imagenet_splits
}
with open(datapath + 'imagenet_classes.txt', 'r') as f:
imagenet_classes = f.readlines()
abstract_imagenet_classes = [
x.strip().replace('\n', '') for x in imagenet_classes
]
imagenet_classes = [key_to_classname[x] for x in abstract_imagenet_classes]
print('\n')
iterator = tqdm.tqdm(dataloader, 'Getting ImageNet pseudolabels...')
memory_collect = []
train_labels = []
class_embed_collect = {}
sample_reassign_topk = []
for i, data_input in enumerate(iterator):
with torch.no_grad():
input = data_input[1]['image']
out = model(input.to(device))
for idx, label in zip(out, data_input[0].cpu().detach().numpy()):
if label not in class_embed_collect:
class_embed_collect[label] = []
class_embed_collect[label].append(idx.detach().cpu().numpy())
train_labels.extend(data_input[0].cpu().detach().numpy().tolist())
sample_reassign_topk.extend(
np.array(imagenet_classes)[np.argsort(
out.detach().cpu().numpy(), axis=1)[:,
-topk:][:, ::-1]].tolist())
class_collect_topk = {
key: np.argsort(np.stack(item, axis=0).mean(axis=0))[-topk:][::-1]
for key, item in class_embed_collect.items()
}
label_reassign_topk = [[] for _ in range(topk)]
for k in range(topk):
for label in np.unique(train_labels):
label_reassign_topk[k].append(
imagenet_classes[class_collect_topk[label][k]])
if not full_label:
label_reassign_topk = [[x.split(', ')[0] for x in y]
for y in label_reassign_topk]
sample_reassign_topk = [[x.split(', ')[0] for x in y]
for y in sample_reassign_topk]
if was_training:
_ = model.train()
dataloader.dataset.crop_size = crop_size
dataloader.dataset.base_size = base_size
dataloader.dataset.provide_transforms()
return label_reassign_topk, sample_reassign_topk