-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM_Neural_Network.py
71 lines (48 loc) · 1.94 KB
/
LSTM_Neural_Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Muhammad Raisul Islam Evan
# MBSTU CSE- 15th
# Tangail, Dhaka, Bangladesh
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
data = pd.read_csv('/home/evan/Downloads/final.csv')
data = data.values
X_train = np.asarray(data[:, 1:16])
Y_train = np.asarray(data[:, 16])
xtrain, xtest, ytrain, ytest = train_test_split(X_train, Y_train, test_size=0.3)
X_train = np.reshape(X_train, (-1, 1, 15))
Y_train = np.reshape(Y_train, (-1, 1, 1))
model=Sequential()
model.add(LSTM(100, input_shape=(1,15), return_sequences=True))
model.add(LSTM(100, return_sequences=True, recurrent_dropout=0.2))
model.add(LSTM(100, return_sequences=True, recurrent_dropout=0.2))
model.add(LSTM(100, return_sequences=False, recurrent_dropout=0.2)) # Change to return_sequences=False
model.add(Dense(1, activation='linear'))
model.compile(optimizer='adam', loss='mean_squared_error')
X_train = X_train.astype(np.int32)
Y_train = Y_train.astype(np.int32)
model.fit(X_train, Y_train, batch_size=32, epochs=100)
xtest = xtest.astype(np.int32)
xtest = np.reshape(xtest, (-1, 1, 15))
y_pred = model.predict(xtest)
print(y_pred.shape)
print(y_pred)
threshold = 0.6
y_pred = (y_pred > threshold).astype(np.int32)
print(y_pred.shape)
print(y_pred)
ytest = (ytest > threshold).astype(np.int32)
accuracy = accuracy_score(ytest, y_pred)
print("Accuracy:", accuracy*100)