forked from hansrajdas/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnum_of_rotations_to_maximize_sum.c
75 lines (70 loc) · 1.76 KB
/
num_of_rotations_to_maximize_sum.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
* Date: 2018-10-21
*
* Description:
* Given an array, find the number of right rotations required to maximize
* sum(i*a[i])
*
* Approach:
* With simple mathematics equations, we can develop below recurrence relation:
* Ri = Ri-1 + array_sum - n*a[n - i]
* where Ri is sum(i*a[i]) after i right rotations.
*
* So we can first iterate over all array elements and find array_sum and R0.
* Then in another loop we can check all values of Ri, i = 1 to n - 1.
*
* Complexity:
* O(N)
*/
#include "stdio.h"
#include "stdlib.h"
int main() {
int i = 0;
int n = 0;
int *A = NULL;
int arr_sum = 0;
int R_i = 0, max_sum = 0, num_of_rot = 0;
printf("Enter number of elements: ");
scanf("%d", &n);
A = (int *)malloc(sizeof(int)*n);
for (i = 0; i < n; i++) {
printf("Enter element[%d]: ", i);
scanf("%d", &A[i]);
R_i += i*A[i]; // Compute R_0, sum(i*a[i]) after 0 right rotations
arr_sum += A[i];
}
max_sum = R_i;
for (i = 1; i < n; i++) {
/*
* Relation was developed for Ri - Ri-1 = arr_sum - n*a[n - i]
* Ri is sum(i*a[i]) after i right rotations
* Ri-1 is sum(i*a[i]) after i-1 right rotations
*/
R_i = arr_sum - n*A[n - i] + R_i;
if (R_i > max_sum) {
max_sum = R_i;
num_of_rot = i;
}
}
printf("Number of rotations[%d], Max sum[%d]\n", num_of_rot, max_sum);
return 0;
}
/*
* Output:
* ------------------
* Enter number of elements: 5
* Enter element[0]: 1
* Enter element[1]: 2
* Enter element[2]: 3
* Enter element[3]: 4
* Enter element[4]: 5
* Number of rotations[0], Max sum[40]
*
* Enter number of elements: 5
* Enter element[0]: 4
* Enter element[1]: 3
* Enter element[2]: 2
* Enter element[3]: 1
* Enter element[4]: 0
* Number of rotations[2], Max sum[25]
*/