-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathPhase_Ex_Trad.m
150 lines (141 loc) · 6.03 KB
/
Phase_Ex_Trad.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function [phase, inst_freq, amp] = Phase_Ex_Trad(x1, fs, varargin)
%
% [phase, inst_freq, amp] = Phase_Ex_Trad(x1, fs)
% [phase, inst_freq, amp] = Phase_Ex_Trad(x1, fs, WS, max_f, ndft)
%
% *************************************************************************
% * Instantaneous Phase (IP) estimation using the conventional analytic *
% * representation approach through FIR filtering and Hilbert Transform. *
% * Refer to the User Guide for further details. *
% *************************************************************************
%
% Inputs:
% x1 : input signal
% fs : sampling frequency (Hz)
% (optional) WS : Stop-band frequency (Hz) >> (BW = WS/2)
% (optional) max_f : Maximum frequency to extract its
% corresponding phase information (the IPs
% will be estimated for frequency components
% from 1(Hz) to max_f(Hz)) *** Refer to
% User Guide for more details.
% (optional) ndft: number of frequency bins
%
% Defaults:
% WS = 1(Hz)
% max_f = 30(Hz)
% ndft = 100
%
% *NOTE: While specifying a value to one of the parameters
% having default values, an empty bracket [] must be
% used for non-specified parameters. If you're not using
% these parameters, empty bracket is not required.
% Outputs:
% phase : Instantaneous Phase matrix for frequency
% components from 1(Hz) to max_f(Hz) ***
% Respectively from first to last ROWS.
% inst_freq : Instantaneous Frequency matrix for
% frequency components from 1(Hz) to
% max_f(Hz) *** Respectively from first
% to last ROWS.
% amp : Instantaneous Amplitude matrix for frequency
% components from 1(Hz) to max_f(Hz) ***
% Respectively from first to last ROWS.
%
% This program is provided by ESMAEIL SERAJ (esmaeil.seraj09@gmail.com).
% Please make sure to reference BOTH the original studies [1-2] and the
% OSET [3] to help others find these items.
%
% [1] Esmaeil Seraj, Reza Sameni. ”Robust Electroencephalogram Phase
% Estimation with Applications in Brain-computer Interface Systems”
% Physiological Measurements (2017)
% [2] Reza Sameni and Esmaeil Seraj, “A Robust Statistical Framework
% for Instantaneous Electroencephalogram Phase and Frequency
% Analysis” Physiological Measurements (2017)
% [3] R. Sameni, The Open-Source Electrophysiological Toolbox (OSET),
% version 3.1 (2014). URL http://www.oset.ir
% Released under the GNU General Public License
% Copyright (C) 2012 Reza Sameni
% Shiraz University, Shiraz, Iran
% reza.sameni@gmail.com
%
% This program is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2 of the License, or (at your
% option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
% Public License for more details. You should have received a copy of the
% GNU General Public License along with this program; if not, write to the
% Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
% MA 02110-1301, USA.
%
%%-Checking inputs and assigning default values-%%
x1 = x1(:)';
if nargin<2
error('***At Least the Sampling Frequency (Fs) Have to Be Specified***')
elseif nargin==2
f = linspace(0, 1, 6);
max_f = 30;
ndft = 100;
elseif nargin>2
if nargin~=5
error('***An Empty Bracket [] Must be Used for the Values NOT Being Specified***')
end
if isempty(varargin{1})
f = linspace(0, 1, 6);
else
f = linspace(0, varargin{1}, 6);
end
if isempty(varargin{2})
max_f = 30;
else
max_f = varargin{2};
end
if isempty(varargin{3})
ndft = 100;
else
ndft = varargin{3};
end
end
%%-Parks-McClellan optimal FIR filter Parameters and design-%%
tic
rp = 0.1;
rs = 60;
a = [0 1 1 0];
dev = [0.01 (10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20) 0.01];
[n, fo, ao, w] = firpmord(f, a, dev, fs);
b = firpm(n, fo, ao, w);
% fvtool(b, 1, 512, fs) % uncomment to visualize the designed filter
disp('*******************************************************************')
t1 = toc;
disp('>>>Elapsed Time for Designing the Filter in Traditional Method is:')
disp(t1)
%%-Frequency filtering and IP estimation-%%
x1_analytic = zeros(ndft, length(x1));
x1_analytic_phase = zeros(ndft, length(x1));
for i = 1:ndft,
ff = (fs/2)*(i - 1)/ndft;
xx1 = exp(-1j*(2*pi*ff/fs*(0:length(x1)-1))).*x1;
yy1 = filter(b, 1, xx1);
x1_analytic(i, :) = exp(1j*(2*pi*ff/fs*(0:length(x1)-1))).*yy1;
x1_analytic(i, :) = (x1_analytic(i, :) + conj(x1_analytic(i, :)))/2;
x1_analytic_phase(i, :) = hilbert(x1_analytic(i, :));
end
amp = zeros(max_f, length(x1));
phase = zeros(max_f, length(x1));
phase1 = atan2(imag(x1_analytic_phase), real(x1_analytic_phase));
phase1 = unwrap(phase1, [], 2);
for ii=1:max_f
ch = round(ndft*ii/(fs/2)) + 1;
amp(ii, :) = abs(real(x1_analytic_phase(ch, :)) + 1i*imag(x1_analytic_phase(ch, :)));
phase(ii, :) = phase1(ch, :);
end
inst_freq = diff(phase, [], 2);
inst_freq = [inst_freq, zeros(max_f, 1)];
inst_freq = fs*inst_freq/2/pi;
t2 = toc;
disp('>>>Elapsed Time to Fulfill the Procedure in Traditional Method is:')
disp(t2-t1)
disp('*******************************************************************')
end