-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
152 lines (126 loc) · 5.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# #
# Authors: Erkan Milli
import argparse
import cv2
import os
import numpy as np
import sys
import torch
from utils.config import create_config
from utils.common_config import get_train_dataset, get_transformations,\
get_val_dataset, get_train_dataloader, get_val_dataloader,\
get_optimizer, get_model, adjust_learning_rate,\
get_criterion
from utils.logger import Logger
from train.train_utils import train_vanilla
from evaluation.evaluate_utils import eval_model, validate_results, save_model_predictions,\
eval_all_results
from evaluation import helper
from evaluation.fnc_evRoad import fnc_evRoad
# from evaluation.fnc_evRoadFast import fnc_evRoadFast
from termcolor import colored
# from utils.statistic import Statistic
def main():
# Retrieve config file
cv2.setNumThreads(0)
p = create_config(args.config_env, args.config_exp)
sys.stdout = Logger(os.path.join(p['output_dir'], 'log_file.txt'))
print(colored(p, 'red'))
# Get model
print(colored('Retrieve model', 'green'))
model = get_model(p)
model = torch.nn.DataParallel(model)
model = model.cuda()
# Get criterion
print(colored('Get loss', 'green'))
criterion = get_criterion(p)
criterion.cuda()
print(criterion)
# CUDNN
print(colored('Set CuDNN benchmark', 'green'))
torch.backends.cudnn.benchmark = True
# Optimizer
print(colored('Retrieve optimizer', 'green'))
optimizer = get_optimizer(p, model)
print(optimizer)
# Dataset
print(colored('Retrieve dataset', 'green'))
# Transforms
train_transforms, val_transforms = get_transformations(p)
train_dataset = get_train_dataset(p, train_transforms)
val_dataset = get_val_dataset(p, val_transforms)
true_val_dataset = get_val_dataset(p, None) # True validation dataset without reshape
train_dataloader = get_train_dataloader(p, train_dataset)
val_dataloader = get_val_dataloader(p, val_dataset)
print('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)))
print('Train transformations:')
print(train_transforms)
print('Val transformations:')
print(val_transforms)
max_F_score = 0
# Resume from checkpoint
if os.path.exists(p['checkpoint']):
print(colored('Restart from checkpoint {}'.format(p['checkpoint']), 'green'))
checkpoint = torch.load(p['checkpoint'], map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer'])
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
max_F_score = checkpoint['best_result']
else:
print(colored('No checkpoint file at {}'.format(p['checkpoint']), 'green'))
start_epoch = 0
save_model_predictions(p, val_dataloader, model)
prob_eval_scores = fnc_evRoad(p['save_dir']+'/semseg', val_dataset)
MaxF = prob_eval_scores[1]
max_F_score = MaxF
# Main loop
print(colored('Starting main loop', 'green'))
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*10, 'yellow'))
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
# Train
print('Train ...')
eval_train = train_vanilla(p, train_dataloader, model, criterion, optimizer, epoch)
# Evaluate
# Check if need to perform eval first
if 'eval_final_10_epochs_only' in p.keys() and p['eval_final_10_epochs_only']: # To speed up -> Avoid eval every epoch, and only test during final 10 epochs.
if epoch + 1 > p['epochs'] - 10:
eval_bool = True
else:
eval_bool = False
else:
eval_bool = True
# Perform evaluation
if eval_bool:
print('Evaluate ...')
save_model_predictions(p, val_dataloader, model)
prob_eval_scores = fnc_evRoad(p['save_dir']+'/semseg', val_dataset)
MaxF = prob_eval_scores[1]
if MaxF > max_F_score:
print('Save new best model')
max_F_score = MaxF
torch.save(model.state_dict(), p['best_model'])
print('Checkpoint ...')
torch.save({'optimizer': optimizer.state_dict(), 'model': model.state_dict(),
'epoch': epoch + 1, 'best_result': max_F_score}, p['checkpoint'])
# Evaluate best model at the end
print(colored('Evaluating best model at the end', 'green'))
model.load_state_dict(torch.load(p['checkpoint'])['model'])
save_model_predictions(p, val_dataloader, model)
prob_eval_scores = fnc_evRoad(p['save_dir']+'/semseg', val_dataset)
MaxF = prob_eval_scores[1]
# eval_stats = eval_all_results(p)
if __name__ == "__main__":
# Parser
parser = argparse.ArgumentParser(description='Vanilla Training')
parser.add_argument('--config_env', default = 'configs/env.yml',
help='Config file for the environment')
# parser.add_argument('--config_exp', default = 'configs/pascal/resnet18/normals.yml',
# help='Config file for the experiment')
parser.add_argument('--config_exp', default = 'configs/kitti/hrnet48/mti_net_normals.yml',
help='Config file for the experiment')
args = parser.parse_args()
main()