-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DIS.py
143 lines (124 loc) · 5.12 KB
/
train_DIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#%%
import argparse
import numpy as np
import torch
from models.MLP import MLP
import warnings
warnings.filterwarnings('ignore')
from torch_geometric.datasets import Planetoid, WebKB
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true',
default=False, help='debug mode')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=15, help='Random seed.')
parser.add_argument('--lr', type=float, default=0.003,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=0.005,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=128,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.65,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--epochs', type=int, default=400, help='Number of epochs to train.')
parser.add_argument("--layer", type=int, default=2)
parser.add_argument('--dataset', type=str, default='Cornell', help='Random seed.')
args = parser.parse_known_args()[0]
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
if args.cuda:
torch.cuda.manual_seed(args.seed)
print(args)
#%%
from torch_geometric.utils import to_undirected
import torch_geometric.transforms as T
# from torch_geometric.datasets import WebKB
from torch_geometric.datasets import WebKB,Planetoid
transform = T.Compose([T.NormalizeFeatures()])
if args.dataset in ['Cora', 'Citeseer', 'Pubmed']:
from models.DIS_texas import DIS
dataset = Planetoid(root='./data/',name=args.dataset,transform=transform)
data = dataset[0].to(device)
data.train_mask = torch.unsqueeze(data.train_mask, dim=1)
data.val_mask = torch.unsqueeze(data.val_mask, dim=1)
data.test_mask = torch.unsqueeze(data.test_mask, dim=1)
if args.dataset in ["Texas", "Wisconsin","Cornell"]:
from models.DIS_texas import DIS
dataset = WebKB(root='./data/',name=args.dataset)
data = dataset[0].to(device)
if args.dataset in ["crocodile", "squirrel",'chameleon']:
from models.DIS_lp import DIS
from dataset import WikipediaNetwork
if args.dataset=="crocodile":
dataset = WikipediaNetwork('./data/',name=args.dataset,geom_gcn_preprocess=False)
else:
dataset = WikipediaNetwork('./data/',name=args.dataset)
data = dataset[0].to(device)
if args.dataset == "arxiv-year":
from models.DIS_texas import DIS
from dataset import load_arxiv_year_dataset
data = load_arxiv_year_dataset('./data/').to(device)
#%%
from utils import sparse_mx_to_torch_sparse_tensor
from torch_geometric.utils import to_scipy_sparse_matrix
import scipy.sparse as sp
results = []
dis_results = []
for i in range(data.train_mask.shape[1]):
train_mask = data.train_mask[:,i]
val_mask = data.val_mask[:,i]
test_mask = data.test_mask[:,i]
np.random.seed(args.seed)
torch.manual_seed(args.seed)
#%%
if args.dataset == "arxiv-year":
weight_deacy = 0.0
else:
weight_deacy = 5e-4
model = MLP(nfeat=data.x.shape[1],\
nhid=args.hidden,\
nclass= int(data.y.max()+1),\
dropout=args.dropout,\
lr=0.01,\
weight_decay=weight_deacy,\
device=device).to(device)
#%%
model.fit(data.x, data.y, train_mask, val_mask,train_iters=args.epochs)
print('======MLP=====')
result = model.test(test_mask)
print(result)
results.append(result)
#%%
pred = model(data.x).max(dim=1)[1]
pred[train_mask] = data.y[train_mask].long()
edge_label_wise = []
for label in range(int(data.y.max())+1):
mask = (pred==label)
sub_adj = data.edge_index[:,mask[data.edge_index[1]]]
if sub_adj.shape[1]<=0:
continue
dense_adj = to_scipy_sparse_matrix(sub_adj, num_nodes=len(data.x))
rowsum = np.array(dense_adj.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
dense_adj = r_mat_inv.dot(dense_adj)
dense_adj = sparse_mx_to_torch_sparse_tensor(dense_adj).to(device)
edge_label_wise.append(dense_adj)
dis_model = DIS(nfeat=data.x.shape[1],\
nhid=args.hidden,\
nclass= int(data.y.max()+1),\
dropout=args.dropout,\
lr=args.lr,\
layer=args.layer,\
weight_decay=args.weight_decay,\
device=device, k=len(edge_label_wise)).to(device)
dis_model.fit(data.x, edge_label_wise, data.y, train_mask, val_mask,train_iters=args.epochs)
print('======{}th split====='.format(i+1))
dis_result = dis_model.test(test_mask)
print("Test set results: accuracy= {:.4f}".format(dis_result))
dis_results.append(dis_result)
# print(np.mean(results),np.std(results))
print("Aveage: {:.4f}, std: {:.4f}".format(np.mean(dis_results),np.std(dis_results)))
# %%