-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (122 loc) · 5.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import argparse
import shutil
import torch
from torch.utils.data import DataLoader, random_split
from torchvision import transforms, models, utils
from PlantDiseaseDataset import PlantDiseaseDataset
def save_images(dataset, dataset_type, classes):
base_path = os.path.dirname(os.path.abspath(__file__))
data_set_path = os.path.join(base_path, dataset_type)
if os.path.exists(data_set_path):
shutil.rmtree(data_set_path)
os.makedirs(data_set_path)
image_number = {}
for image, label in dataset:
label = str(label)
image_number[label] = image_number.get(label, -1) + 1
img_path = f'{classes[label]}_image_{image_number[label]}.png'
utils.save_image(image, os.path.join(data_set_path, img_path))
print(f"{len(dataset)} images are saved in {data_set_path}.")
def split_train_data(dataset: PlantDiseaseDataset, batch_size=32):
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_set, val_dataset = random_split(dataset, [train_size, val_size])
print(f"Train Data lenght = {len(train_set)}.")
print(f"Test Data lenght = {len(val_dataset)}.")
save_images(dataset, 'preprocess_images', dataset.classes)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
return train_loader, val_loader
def fit_model(model: models.ResNet, train_loader: DataLoader,
val_loader: DataLoader, num_epochs: int,
device: torch.device, criterion: torch.nn.CrossEntropyLoss,
optimizer: torch.optim.Adam):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
train_accuracy = 100.0 * correct / total
print(f"Epoch [{epoch+1}/{num_epochs}],"
f"Loss: {running_loss/len(train_loader):.4f},"
f" Accuracy: {train_accuracy:.2f}%")
# Validation loop
model.eval()
val_correct = 0
val_total = 0
with torch.no_grad():
for images, val_labels in val_loader:
images, val_labels = images.to(device), val_labels.to(device)
val_outputs = model(images)
_, val_predicted = val_outputs.max(1)
val_total += val_labels.size(0)
val_correct += val_predicted.eq(val_labels).sum().item()
val_accuracy = 100.0 * val_correct / val_total
print(f'Validation Accuracy: {val_accuracy:.2f}%')
return model
def save_model(model: models.RegNet, classes):
base_path = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(base_path, 'plant_disease_model.pth')
torch.save({
'model_state_dict': model.state_dict(),
'classes': classes
}, model_path)
def get_args():
parser = argparse.ArgumentParser(description="Train a leaves module.")
parser.add_argument("--data_train", type=str,
required=True, help="Path to the datatrain folder")
parser.add_argument("--total_images", type=int,
default=1000, help="Total Images to be retreived!")
args = parser.parse_args()
return args.data_train, args.total_images
if __name__ == "__main__":
try:
mean_norm = [0.485, 0.456, 0.406]
std_norm = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 2.0)),
transforms.RandomGrayscale(0.1),
transforms.ToTensor(),
transforms.Normalize(mean=mean_norm, std=std_norm)
])
root_dir, total_images = get_args()
kwargs = {
"root_dir": root_dir,
"total_images": total_images,
"transform": train_transform
}
dataset = PlantDiseaseDataset(**kwargs)
print("splitting data!")
train_loader, val_loader = split_train_data(dataset)
print("setting up model!")
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
num_features = model.fc.in_features
model.fc = torch.nn.Linear(num_features, len(dataset.classes))
print("setting up device!")
device = torch.device("cpu")
model = model.to(device)
print("setting up loss function")
criterion = torch.nn.CrossEntropyLoss()
print("setting up optimizer")
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001,
weight_decay=1e-5)
# print("Training begging")
# model = fit_model(model, train_loader,
# val_loader, 6, device, criterion, optimizer)
# print("Saving Model data.")
# save_model(model, dataset.classes)
except Exception as e:
print(f"Error: {e}")