-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtest_human.py
94 lines (73 loc) · 2.59 KB
/
test_human.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import numpy as np
from PIL import Image
def main():
image_paths, label_paths = init_path()
hist = compute_hist(image_paths, label_paths)
show_result(hist)
def init_path():
list_file = './human/list/val_id.txt'
file_names = []
with open(list_file, 'rb') as f:
for fn in f:
file_names.append(fn.strip())
image_dir = './human/features/attention/val/results/'
label_dir = './human/data/labels/'
image_paths = []
label_paths = []
for file_name in file_names:
image_paths.append(os.path.join(image_dir, file_name+'.png'))
label_paths.append(os.path.join(label_dir, file_name+'.png'))
return image_paths, label_paths
def fast_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n)
def compute_hist(images, labels):
n_cl = 20
hist = np.zeros((n_cl, n_cl))
for img_path, label_path in zip(images, labels):
label = Image.open(label_path)
label_array = np.array(label, dtype=np.int32)
image = Image.open(img_path)
image_array = np.array(image, dtype=np.int32)
gtsz = label_array.shape
imgsz = image_array.shape
if not gtsz == imgsz:
image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS)
image_array = np.array(image, dtype=np.int32)
hist += fast_hist(label_array, image_array, n_cl)
return hist
def show_result(hist):
classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes',
'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt',
'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe',
'rightShoe']
# num of correct pixels
num_cor_pix = np.diag(hist)
# num of gt pixels
num_gt_pix = hist.sum(1)
print '=' * 50
# @evaluation 1: overall accuracy
acc = num_cor_pix.sum() / hist.sum()
print '>>>', 'overall accuracy', acc
print '-' * 50
# @evaluation 2: mean accuracy & per-class accuracy
print 'Accuracy for each class (pixel accuracy):'
for i in xrange(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i]))
acc = num_cor_pix / num_gt_pix
print '>>>', 'mean accuracy', np.nanmean(acc)
print '-' * 50
# @evaluation 3: mean IU & per-class IU
union = num_gt_pix + hist.sum(0) - num_cor_pix
for i in xrange(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
print '>>>', 'mean IU', np.nanmean(iu)
print '-' * 50
# @evaluation 4: frequency weighted IU
freq = num_gt_pix / hist.sum()
print '>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum()
print '=' * 50
if __name__ == '__main__':
main()