-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_microAST.py
212 lines (172 loc) · 7.68 KB
/
train_microAST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils.data as data
from PIL import Image, ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from torchvision.utils import save_image
import net_microAST as net
from sampler import InfiniteSamplerWrapper
cudnn.benchmark = True
Image.MAX_IMAGE_PIXELS = None # Disable DecompressionBombError
# Disable OSError: image file is truncated
ImageFile.LOAD_TRUNCATED_IMAGES = True
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(256),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
self.paths = list(Path(self.root).glob('*'))
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(str(path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def adjust_learning_rate(optimizer, iteration_count):
"""Imitating the original implementation"""
lr = args.lr / (1.0 + args.lr_decay * iteration_count)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', type=str,
help='Directory path to a batch of content images',
default='./coco2014/train2014')
parser.add_argument('--style_dir', type=str,
help='Directory path to a batch of style images',
default='./wikiart/train')
parser.add_argument('--vgg', type=str, default='models/vgg_normalised.pth')
parser.add_argument('--sample_path', type=str, default='samples',
help='Derectory to save the intermediate samples')
# training options
parser.add_argument('--save_dir', default='./exp',
help='Directory to save the models')
parser.add_argument('--log_dir', default='./logs',
help='Directory to save the log')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--lr_decay', type=float, default=5e-5)
parser.add_argument('--max_iter', type=int, default=160000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=3.0)
parser.add_argument('--content_weight', type=float, default=1.0)
parser.add_argument('--SSC_weight', type=float, default=3.0)
parser.add_argument('--n_threads', type=int, default=16)
parser.add_argument('--save_model_interval', type=int, default=10000)
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--resume', action='store_true', help='train the model from the checkpoint')
parser.add_argument('--checkpoints', default='./checkpoints',
help='Directory to save the checkpoint')
args = parser.parse_args()
device = torch.device('cuda:%d' % args.gpu_id)
save_dir = Path(args.save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
log_dir = Path(args.log_dir)
log_dir.mkdir(exist_ok=True, parents=True)
checkpoints_dir = Path(args.checkpoints)
checkpoints_dir.mkdir(exist_ok=True, parents=True)
writer = SummaryWriter(log_dir=str(log_dir))
vgg = net.vgg
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
content_encoder = net.Encoder()
style_encoder = net.Encoder()
modulator = net.Modulator()
decoder = net.Decoder()
network = net.Net(vgg, content_encoder, style_encoder, modulator, decoder)
network.train()
network.to(device)
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=args.n_threads))
optimizer = torch.optim.Adam([
{'params':network.content_encoder.parameters()},
{'params':network.style_encoder.parameters()},
{'params':network.modulator.parameters()},
{'params':network.decoder.parameters()}
], lr=args.lr)
start_iter = -1
# continue training from the checkpoint
if args.resume:
checkpoints = torch.load(args.checkpoints + '/checkpoints.pth.tar')
network.load_state_dict(checkpoints['net'])
optimizer.load_state_dict(checkpoints['optimizer'])
start_iter = checkpoints['epoch']
# training
for i in tqdm(range(start_iter+1, args.max_iter)):
adjust_learning_rate(optimizer, iteration_count=i)
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
stylized_results, loss_c, loss_s, loss_contrastive = network(content_images, style_images)
loss_c = args.content_weight * loss_c
loss_s = args.style_weight * loss_s
loss_contrastive = args.SSC_weight * loss_contrastive
loss = loss_c + loss_s + loss_contrastive
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar('loss_content', loss_c.item(), i + 1)
writer.add_scalar('loss_style', loss_s.item(), i + 1)
writer.add_scalar('loss_contrastive', loss_contrastive.item(), i + 1)
############################################################################
# save intermediate samples
output_dir = Path(args.sample_path)
output_dir.mkdir(exist_ok=True, parents=True)
if (i + 1) % 500 == 0:
visualized_imgs = torch.cat([content_images, style_images, stylized_results])
output_name = output_dir / 'output{:d}.jpg'.format(i + 1)
save_image(visualized_imgs, str(output_name), nrow=args.batch_size)
print('[%d/%d] loss_content:%.4f, loss_style:%.4f, loss_contrastive:%.4f' \
% (i+1, args.max_iter, loss_c.item(), loss_s.item(), loss_contrastive.item()))
############################################################################
if (i + 1) % args.save_model_interval == 0 or (i + 1) == args.max_iter:
state_dict = network.content_encoder.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict, save_dir /
'content_encoder_iter_{:d}.pth.tar'.format(i + 1))
state_dict = network.style_encoder.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict, save_dir /
'style_encoder_iter_{:d}.pth.tar'.format(i + 1))
state_dict = network.modulator.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict, save_dir /
'modulator_iter_{:d}.pth.tar'.format(i + 1))
state_dict = network.decoder.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict, save_dir /
'decoder_iter_{:d}.pth.tar'.format(i + 1))
checkpoints = {
"net": network.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": i
}
torch.save(checkpoints, checkpoints_dir / 'checkpoints.pth.tar')
writer.close()