-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_ensemble_model.py
48 lines (45 loc) · 3.22 KB
/
run_ensemble_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import torch
import pprint
from config import args as default_args
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ECNU-SenseMaker single model')
parser.add_argument('--batch-size', type=int, default=default_args['batch_size'], metavar='N',
help='input batch size for training (default: {})'.format(default_args['batch_size']))
parser.add_argument('--test-batch-size', type=int, default=default_args['test_batch_size'], metavar='N',
help='input batch size for testing (default: {})'.format(default_args['test_batch_size']))
parser.add_argument('--epochs', type=int, default=default_args['epochs'], metavar='N',
help='number of epochs to train (default: {})'.format(default_args['epochs']))
parser.add_argument('--fine-tune-epochs', type=int, default=default_args['fine_tune_epochs'], metavar='N',
help='number of fine-tune epochs to train (default: {})'.format(
default_args['fine_tune_epochs']))
parser.add_argument('--lr', type=float, default=default_args['lr'], metavar='LR',
help='learning rate (default: {})'.format(default_args['lr']))
parser.add_argument('--fine-tune-lr', type=float, default=default_args['fine_tune_lr'], metavar='LR',
help='fine-tune learning rate (default: {})'.format(default_args['fine_tune_lr']))
parser.add_argument('--adam-epsilon', type=float, default=default_args['adam_epsilon'], metavar='M',
help='Adam epsilon (default: {})'.format(default_args['adam_epsilon']))
parser.add_argument('--max-seq-length', type=int, default=default_args['max_seq_length'], metavar='N',
help='max length of sentences (default: {})'.format(default_args['max_seq_length']))
parser.add_argument('--subtask-id', type=str, default=default_args['subtask_id'],
required=False, choices=['A', 'B'],
help='subtask A or B (default: {})'.format(default_args['subtask_id']))
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
# parser.add_argument('--dry-run', action='store_true', default=False,
# help='quickly check a single pass')
# parser.add_argument('--seed', type=int, default=1, metavar='S',
# help='random seed (default: 1)')
# parser.add_argument('--log-interval', type=int, default=10, metavar='N',
# help='how many batches to wait before logging training status')
# parser.add_argument('--save-model', action='store_true', default=False,
# help='For Saving the current Model')
args = parser.parse_args() # 获取用户输入的参数
# parser.print_help()
for key in default_args.keys():
# 将输入的参数更新至 default_args
if hasattr(args, key):
default_args[key] = getattr(args, key)
default_args['use_cuda'] = not args.no_cuda and torch.cuda.is_available()
default_args['device'] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
pprint.pprint(default_args)