forked from kwai/DouZero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_evaluate.py
61 lines (47 loc) · 2.32 KB
/
my_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pickle
from douzero.env.game import GameEnv
def load_card_play_models(card_play_model_path_dict):
players = {}
for position in ['landlord', 'landlord_up', 'landlord_down']:
if card_play_model_path_dict[position] == 'rlcard':
from douzero.evaluation.rlcard_agent import RLCardAgent
players[position] = RLCardAgent(position)
elif card_play_model_path_dict[position] == 'random':
from douzero.evaluation.random_agent import RandomAgent
players[position] = RandomAgent()
else:
from douzero.evaluation.deep_agent import DeepAgent
players[position] = DeepAgent(position, card_play_model_path_dict[position])
return players
if __name__ == '__main__':
card_play_model_path_dict = {
'landlord': 'baselines/douzero_ADP/landlord.ckpt',
'landlord_up': 'baselines/douzero_WP/landlord_up.ckpt',
'landlord_down': 'baselines/douzero_WP/landlord_down.ckpt'
}
players = load_card_play_models(card_play_model_path_dict)
with open('eval_data.pkl', 'rb') as f:
card_play_data_list = pickle.load(f)
num_total_wins = 0
num_landlord_wins = 0
num_landlord_scores = 0
num_farmer_wins = 0
num_farmer_scores = 0
for i in range(len(card_play_data_list)):
card_play_data = card_play_data_list[i]
env = GameEnv(players)
env.card_play_init(card_play_data)
while not env.game_over:
env.step()
print(env.debug_record)
env.reset()
num_landlord_wins += env.num_wins['landlord']
num_farmer_wins += env.num_wins['farmer']
num_landlord_scores += env.num_scores['landlord']
num_farmer_scores += env.num_scores['farmer']
num_total_wins = num_landlord_wins + num_farmer_wins
print("获胜次数(地主/农民) [{} : {}] 获胜得分(地主/农民) [{} : {}] 胜率(地主/农民) [{}% : {}%] 总得分(地主/农民) [{} : {}]".format(
env.num_wins['landlord'], env.num_wins['farmer'] * 2, env.num_scores['landlord'], env.num_scores['farmer'] * 2,
round(num_landlord_wins / num_total_wins * 100), round(num_farmer_wins / num_total_wins * 100),
round(num_landlord_scores / num_total_wins * 100), round(2 * num_farmer_scores / num_total_wins * 100)
))