-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (177 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -*- coding: utf-8 -*-
# time: 2024/5/31 15:27
# file: train.py
# author: Shuai
import torch
import torch.nn as nn
import torch.optim as optim
import os
from dataloader import MyCustomDataset
from load_model import load_model
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
import datetime
import random
import numpy as np
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR
import argparse
from utils import ismn_loss
from ismn.interface import ISMN_Interface
import warnings
warnings.filterwarnings("ignore")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--year", type=str, default='2012')
parser.add_argument("--depth", type=str, default='10cm')
parser.add_argument("--epoches", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--d_model", type=int, default=64)
parser.add_argument("--inputs", type=int, default=32)
parser.add_argument("--outputs", type=int, default=1)
parser.add_argument("--model_name", type=str) # 'LSTM', 'mamba', 'unet', 'vgg', 'mamba2'
parser.add_argument("--pretrained", type=str, default=False)
parser.add_argument("--model_path", type=str, default='model_pth/mamba_30epoch_weights.pth')
args = parser.parse_args()
with open('{}_{}_names.txt'.format(args.year, args.depth), "r") as f:
total_names = f.readlines()
total_names = [i[:-1] for i in total_names]
sample_size = int(len(total_names) * 0.001)
total_names = random.sample(total_names, sample_size)
names_file = open('{}_{}_used_names.txt'.format(args.year, args.depth), 'w')
for i in total_names:
i = i + '\n'
names_file.write(i)
names_file.close()
train_input_names, test_input_names, train_labels_names, test_labels_names = train_test_split(total_names,
total_names,
test_size=0.3,
random_state=42)
train_num = len(train_input_names)
test_num = len(test_input_names)
mean = np.load('mean_and_std/{}_{}_mean_bands.npy'.format(args.year, args.depth))
std = np.load('mean_and_std/{}_{}_std_bands.npy'.format(args.year, args.depth))
mean_and_std_for_SM = np.load('norm_for_SM/{}_{}_SM_mean_and_std.npy'.format(args.year, args.depth))
# 创建自定义数据集对象
# bands = os.listdir(r'H:\soil_moistur_retrieval\tiles\2020')
# SM_path = r'J:\research\soil_moistur_retrieval\SMCI_1km\10cm\SMCI_1km_{}_{}'.format(args.year, args.depth)
bands = os.listdir('tiles/{}/{}'.format(args.year, args.depth))
dataset_path = 'tiles/{}_stack/{}'.format(args.year, args.depth)
SM_path = 'Soil_Moisture/SMCI_1km_{}_{}'.format(args.year, args.depth)
train_dataset = MyCustomDataset(train_input_names, bands, dataset_path=dataset_path,
SM_path=SM_path, mean=mean, std=std, mean_and_std_for_SM=mean_and_std_for_SM)
test_dataset = MyCustomDataset(test_input_names, bands, dataset_path=dataset_path,
SM_path=SM_path, mean=mean, std=std, mean_and_std_for_SM=mean_and_std_for_SM)
# 创建 DataLoader 对象
batch_size = args.batch_size
train_data_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_data_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
model_name = args.model_name
print(model_name)
# 创建模型
model = load_model(args=args).to(device)
pretrained = args.pretrained
if pretrained:
model_path = args.model_path
model.load_state_dict(torch.load(model_path))
print('Load pre-trained model successfully!')
current_time = datetime.datetime.strftime(datetime.datetime.now(), '%Y_%m_%d_%H_%M_%S')
with open('train_and_predict_out/time/{}_{}_{}_time.txt'.format(args.year, args.depth, str(model_name)), 'w') as f:
f.write('start time: {}\n'.format(str(current_time)))
f.close()
process = open('train_and_predict_out/process/{}_{}_{}_process.txt'.format(args.year, args.depth, str(model_name)), 'w')
process.write("训练集大小:{}\n".format(str(len(train_input_names))))
process.write("测试集大小:{}\n".format(str(len(test_input_names))))
process.close()
print("训练集大小:", len(train_input_names))
print("测试集大小:", len(test_input_names))
# 定义损失函数和优化器
criterion = nn.MSELoss(reduction='mean').to(device)
optimizer = optim.SGD(model.parameters(), lr=0.001)
# 定义学习率衰减策略(这里使用StepLR)
# scheduler = StepLR(optimizer, step_size=1000, gamma=0.5)
scheduler = CosineAnnealingLR(optimizer, T_max=210)
learningRate = open('train_and_predict_out/LR/{}_{}_{}_learningRate.txt'.format(args.year, args.depth, str(model_name)), 'w')
learningRate.write("{}\n".format(optimizer.param_groups[0]['lr']))
learningRate.close()
# 记录损失
trainLoss_file = open(os.path.join('train_and_predict_out/loss/{}_{}_{}_train_loss.txt'.format(args.year, args.depth, str(model_name))), 'w')
trainLoss_file.close()
valLoss_file = open(os.path.join('train_and_predict_out/loss/{}_{}_{}_val_loss.txt'.format(args.year, args.depth, str(model_name))), 'w')
valLoss_file.close()
# 遍历 DataLoader 对象
val_loss_list = []
train_loss_list = []
epoches = args.epoches
last_ten_loss = [1] * 10
for epoch in range(0, epoches):
current_time = datetime.datetime.strftime(datetime.datetime.now(), '%Y_%m_%d_%H_%M_%S')
with open('train_and_predict_out/time/{}_{}_{}_time.txt'.format(args.year, args.depth, str(model_name)), 'a') as f:
f.write('opech: {} start time: {}\n'.format(epoch, str(current_time)))
f.close()
total_train_loss = 0.0
total_val_loss = 0.0
model.train()
for iteration, batch in enumerate(train_data_loader):
train_input_data = batch['image'].to(device).float()
train_labels = batch['label'].to(device).float()
image_names = batch['image_name']
optimizer.zero_grad()
if args.model_name == 'transformer':
outputs, train_labels = model(train_input_data, train_labels)
else:
outputs = model(train_input_data)
loss = criterion(outputs, train_labels)
loss = torch.sqrt(loss)
loss.backward()
optimizer.step()
total_train_loss += loss.item()
process = open('train_and_predict_out/process/{}_{}_{}_process.txt'.format(args.year, args.depth, str(model_name)), 'a')
process.write("iteration: {}, epoch: {}, Train Total Loss: {}\n".format(iteration, epoch, total_train_loss))
process.close()
print("iteration: %s, epoch: %s, Train Total Loss: %s" % (iteration, epoch, total_train_loss))
# 调整学习率
scheduler.step()
average_train_loss = total_train_loss / len(train_data_loader)
trainLoss_file = open(os.path.join('train_and_predict_out/loss/{}_{}_{}_train_loss.txt'.format(args.year, args.depth, str(model_name))), 'a')
trainLoss_file.write(str(average_train_loss) + '\n')
trainLoss_file.close()
learningRate = open('train_and_predict_out/LR/{}_{}_{}_learningRate.txt'.format(args.year, args.depth, str(model_name)), 'a')
learningRate.write("{}\n".format(optimizer.param_groups[0]['lr']))
learningRate.close()
model.eval()
with torch.no_grad():
for iteration, batch in enumerate(test_data_loader):
test_input_data = batch['image'].to(device).float()
test_labels = batch['label'].to(device).float()
image_names = batch['image_name']
outputs = model(test_input_data)
loss = criterion(outputs, test_labels)
loss = torch.sqrt(loss)
total_val_loss += loss.item()
process = open('train_and_predict_out/process/{}_{}_{}_process.txt'.format(args.year, args.depth, str(model_name)), 'a')
process.write("iteration: {}, epoch: {}, Val Total Loss: {}\n".format(iteration, epoch, total_val_loss))
process.close()
print("iteration: %s, epoch: %s, Val Total Loss: %s" % (iteration, epoch, total_val_loss))
average_val_loss = total_val_loss / len(test_data_loader)
valLoss_file = open(os.path.join('train_and_predict_out/loss/{}_{}_{}_val_loss.txt'.format(args.year, args.depth, str(model_name))), 'a')
valLoss_file.write(str(average_val_loss) + '\n')
valLoss_file.close()
process = open('train_and_predict_out/process/{}_{}_{}_process.txt'.format(args.year, args.depth, str(model_name)), 'a')
process.write("epoch: {}, Average Loss: {}\n".format(epoch, average_train_loss))
process.close()
print("------------- epoch: %s, Average Loss: %s ------------" % (epoch, average_train_loss))
last_ten_loss.append(average_val_loss)
last_ten_loss = last_ten_loss[1:]
average_last_ten_loss = np.mean(last_ten_loss)
if average_last_ten_loss < average_val_loss and epoch >= 10:
torch.save(model.state_dict(), 'train_and_predict_out/model_pth/{}/{}/{}_best_weights.pth'.format(args.year, args.depth, str(model_name)))
print(str(average_last_ten_loss) + '<' + str(average_val_loss) + ':True')
break
if (epoch+1) % 10 == 0 and epoch != 0:
# 保存模型
torch.save(model.state_dict(), 'train_and_predict_out/model_pth/{}/{}/{}_{}epoch_weights.pth'.format(args.year, args.depth, str(model_name), epoch+1))
current_time = datetime.datetime.strftime(datetime.datetime.now(), '%Y_%m_%d_%H_%M_%S')
with open('train_and_predict_out/time/{}_{}_{}_time.txt'.format(args.year, args.depth, str(model_name)), 'a') as f:
f.write('end time: {}\n'.format(str(current_time)))
f.close()