forked from Sleepwalking/ciglet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathciglet.h
1397 lines (1160 loc) · 40.6 KB
/
ciglet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
ciglet
===
Copyright (c) 2016-2019, Kanru Hua
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CIGLET_H
#define CIGLET_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifndef CIGLET_SINGLE_FILE
#ifdef __EMSCRIPTEN__
#include "external/fastapprox-all-nosimd.h"
#else
#include "external/fastapprox-all.h"
#endif
#endif
// === Scalar operations ===
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
static inline FP_TYPE linterp(FP_TYPE a, FP_TYPE b, FP_TYPE ratio) {
return a + (b - a) * ratio;
}
/*
For higher efficiency we would like to replace some std math functions by their
approximated versions.
However we also need to be careful with approximation error.
The numbers after function names listed below indicate the level of precision,
the higher the better (but slower).
*/
#define sin_3 sin
#define sin_2 fastsinfull
#define sin_1 fastersinfull
#define cos_3 cos
#define cos_2 fastcosfull
#define cos_1 fastercosfull
#define exp_3 exp
#define exp_2 fastexp
#define exp_1 fasterexp
#define log_3 log
#define log_2 fastlog
#define log_1 fasterlog
#define atan2_3 atan2
#define atan2_2 atan2
#define atan2_1 fastatan2
#ifndef M_PI
#define M_PI 3.14159265358979323846264
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923132
#endif
#define M_EPS 1e-15
#define M_INF 1e15
// https://gist.github.com/volkansalma/2972237
static inline FP_TYPE fastatan2(FP_TYPE y, FP_TYPE x) {
if(x == 0.0f) {
if(y > 0.0f) return M_PI_2;
if(y == 0.0f) return 0.0f;
return -M_PI_2;
}
FP_TYPE atan;
FP_TYPE z = y / x;
if(fabs(z) < 1.0f) {
atan = z / (1.0f + 0.28f * z * z);
if(x < 0.0f) {
if(y < 0.0f) return atan - M_PI;
return atan + M_PI;
}
} else {
atan = M_PI_2 - z / (z * z + 0.28f);
if(y < 0.0f) return atan - M_PI;
}
return atan;
}
static inline FP_TYPE randu() {
return ((FP_TYPE)rand() / RAND_MAX - 0.5) * 2.0;
}
static inline FP_TYPE randn(FP_TYPE u, FP_TYPE v) {
FP_TYPE u1 = (FP_TYPE)rand() / RAND_MAX;
FP_TYPE u2 = (FP_TYPE)rand() / RAND_MAX;
return sqrt(-2.0 * log_2(u1) * v) * cos_2(2.0 * M_PI * u2) + u;
}
// === Complex scalar arithmetics ===
typedef struct {
FP_TYPE real;
FP_TYPE imag;
} cplx;
static inline cplx c_cplx(FP_TYPE real, FP_TYPE imag) {
cplx ret;
ret.real = real;
ret.imag = imag;
return ret;
}
static inline cplx c_conj(cplx a) {
a.imag = -a.imag;
return a;
}
static inline cplx c_add(cplx a, cplx b) {
cplx ret;
ret.real = a.real + b.real;
ret.imag = a.imag + b.imag;
return ret;
}
static inline cplx c_sub(cplx a, cplx b) {
cplx ret;
ret.real = a.real - b.real;
ret.imag = a.imag - b.imag;
return ret;
}
static inline cplx c_mul(cplx a, cplx b) {
cplx ret;
ret.real = a.real * b.real - a.imag * b.imag;
ret.imag = a.real * b.imag + a.imag * b.real;
return ret;
}
static inline cplx c_div(cplx a, cplx b) {
cplx ret;
FP_TYPE denom = b.real * b.real + b.imag * b.imag;
ret.real = (a.real * b.real + a.imag * b.imag) / denom;
ret.imag = (a.imag * b.real - a.real * b.imag) / denom;
return ret;
}
#define c_exp c_exp_2
static inline cplx c_exp_3(cplx a) {
cplx ret;
FP_TYPE mag = exp_3(a.real);
ret.real = mag * cos_3(a.imag);
ret.imag = mag * sin_3(a.imag);
return ret;
}
static inline cplx c_exp_2(cplx a) {
cplx ret;
FP_TYPE mag = exp_2(a.real);
ret.real = mag * cos_2(a.imag);
ret.imag = mag * sin_2(a.imag);
return ret;
}
static inline cplx c_exp_1(cplx a) {
cplx ret;
FP_TYPE mag = exp_1(a.real);
ret.real = mag * cos_1(a.imag);
ret.imag = mag * sin_1(a.imag);
return ret;
}
static inline FP_TYPE c_abs(cplx a) {
return sqrt(a.real * a.real + a.imag * a.imag);
}
#define c_arg_3 c_arg_2
#define c_arg c_arg_2
static inline FP_TYPE c_arg_2(cplx a) {
return atan2_2(a.imag, a.real);
}
static inline FP_TYPE c_arg_1(cplx a) {
return atan2_1(a.imag, a.real);
}
// === Vector operations & statistics ===
#define CIG_DEF_N_TO_ONE(name, op, init) \
static inline FP_TYPE name(FP_TYPE* src, int n) { \
FP_TYPE ret = init; \
for(int i = 0; i < n; i ++) \
ret = op(ret, src[i]); \
return ret; \
}
#define CIG_DEF_ADD(a, b) ((a) + (b))
#define CIG_DEF_ADDSQR(a, b) ((a) + (b) * (b))
#define CIG_DEF_MAX(a, b) ((a) > (b) ? (a) : (b))
#define CIG_DEF_MIN(a, b) ((a) < (b) ? (a) : (b))
CIG_DEF_N_TO_ONE(sumfp, CIG_DEF_ADD, 0);
CIG_DEF_N_TO_ONE(sumsqrfp, CIG_DEF_ADDSQR, 0);
CIG_DEF_N_TO_ONE(maxfp, CIG_DEF_MAX, src[0]);
CIG_DEF_N_TO_ONE(minfp, CIG_DEF_MIN, src[0]);
#define meanfp(src, n) (sumfp(src, n) / (n))
static inline FP_TYPE varfp(FP_TYPE* src, int n) {
FP_TYPE mean = meanfp(src, n);
FP_TYPE sumsqr = sumsqrfp(src, n) / n;
return sumsqr - mean * mean;
}
FP_TYPE cig_qselect(FP_TYPE* x, int nx, int n);
FP_TYPE cig_medianfp(FP_TYPE* x, int nx);
// cross correlation; maxlag is size of returned array
FP_TYPE* cig_xcorr(FP_TYPE* x, FP_TYPE* y, int nx, int maxlag);
static inline FP_TYPE* xcorr(FP_TYPE* x, FP_TYPE* y, int nx) {
return cig_xcorr(x, y, nx, nx);
}
static inline FP_TYPE selectnth(FP_TYPE* x, int nx, int n) {
return cig_qselect(x, nx, n);
}
static inline FP_TYPE medianfp(FP_TYPE* x, int nx) {
return cig_medianfp(x, nx);
}
FP_TYPE* cig_sort(FP_TYPE* x, int nx, int* outidx);
static inline FP_TYPE* sort(FP_TYPE* x, int nx, int* outidx) {
return cig_sort(x, nx, outidx);
}
static inline FP_TYPE cov(FP_TYPE* x, FP_TYPE* y, int nx) {
FP_TYPE ux = meanfp(x, nx);
FP_TYPE uy = meanfp(y, nx);
FP_TYPE cov = 0;
for(int i = 0; i < nx; i ++)
cov += (x[i] - ux) * (y[i] - uy);
return cov / nx;
}
static inline FP_TYPE corr(FP_TYPE* x, FP_TYPE* y, int nx) {
return cov(x, y, nx) / sqrt(varfp(x, nx) * varfp(y, nx));
}
int cig_find_peak(FP_TYPE* x, int lidx, int uidx, int orient);
int cig_find_extrema(FP_TYPE* x, int lidx, int uidx, int orient);
static inline int find_peak(FP_TYPE* x, int lidx, int uidx) {
return cig_find_peak(x, lidx, uidx, 1);
}
static inline int find_valley(FP_TYPE* x, int lidx, int uidx) {
return cig_find_peak(x, lidx, uidx, -1);
}
static inline int find_maxima(FP_TYPE* x, int lidx, int uidx) {
return cig_find_extrema(x, lidx, uidx, 1);
}
static inline int find_minima(FP_TYPE* x, int lidx, int uidx) {
return cig_find_extrema(x, lidx, uidx, -1);
}
// === Numerical routines ===
// function pointer of one-to-one float point operation with environment variable
typedef FP_TYPE (*fpe_one_to_one)(FP_TYPE x, void* env);
FP_TYPE cig_fzero(fpe_one_to_one func, FP_TYPE xmin, FP_TYPE xmax, void* env);
static inline FP_TYPE fzero(fpe_one_to_one func, FP_TYPE xmin, FP_TYPE xmax, void* env) {
return cig_fzero(func, xmin, xmax, env);
}
// evaluate polynomial of order np-1 at x
cplx cig_polyval(cplx* poly, int np, cplx x);
static inline cplx polyval(cplx* poly, int np, cplx x) {
return cig_polyval(poly, np, x);
}
// real coefficient version of polyval
static inline cplx polyvalr(FP_TYPE* poly, int np, cplx x) {
cplx* cpoly = malloc(np * sizeof(cplx));
for(int i = 0; i < np; i ++) cpoly[i] = c_cplx(poly[i], 0);
cplx ret = cig_polyval(cpoly, np, x);
free(cpoly);
return ret;
}
// polynomial root finding; order = np-1
// note: may not work for polynomials whose degree > 20
cplx* cig_roots(cplx* poly, int np);
static inline cplx* roots(cplx* poly, int np) {
return cig_roots(poly, np);
}
// real coefficient version of roots
static inline cplx* rootsr(FP_TYPE* poly, int np) {
cplx* cpoly = malloc(np * sizeof(cplx));
for(int i = 0; i < np; i ++) cpoly[i] = c_cplx(poly[i], 0);
cplx* ret = cig_roots(cpoly, np);
free(cpoly);
return ret;
}
// === Memory (de)allocation ===
static inline FP_TYPE* linspace(FP_TYPE x0, FP_TYPE x1, int nx) {
FP_TYPE* x = malloc(nx * sizeof(FP_TYPE));
for(int i = 0; i < nx; i ++)
x[i] = x0 + (x1 - x0) * i / (nx - 1);
return x;
}
static inline int* iota(int x0, int step, int nx) {
int* x = malloc(nx * sizeof(int));
for(int i = 0; i < nx; i ++)
x[i] = x0 + step * i;
return x;
}
#define malloc2d(m, n, size) (void*)malloc2d_(m, n, size)
static inline void** malloc2d_(size_t m, size_t n, size_t size) {
void** ret = calloc(m, sizeof(void*));
for(size_t i = 0; i < m; i++)
ret[i] = calloc(n, size);
return ret;
}
#define copy2d(src, m, n, size) (void*)copy2d_((void**)src, m, n, size)
static inline void** copy2d_(void** src, size_t m, size_t n, size_t size) {
void** ret = malloc2d(m, n, size);
for(size_t i = 0; i < m; i ++)
memcpy(ret[i], src[i], n * size);
return ret;
}
#define free2d(ptr, m) free2d_((void**)(ptr), m)
static inline void free2d_(void** ptr, size_t m) {
for(size_t i = 0; i < m; i ++)
free(ptr[i]);
free(ptr);
}
#define flatten(ptr, m, n, size) (void*)flatten_((void**)(ptr), m, n, size)
static inline void* flatten_(void** ptr, size_t m, size_t n, size_t size) {
void* ret = malloc(size * m * n);
for(size_t i = 0; i < m; i ++)
memcpy((char*)ret + i * n * size, ptr[i], n * size);
return ret;
}
#define reshape(ptr, m, n, size) (void*)reshape_((void**)(ptr), m, n, size)
static inline void** reshape_(void* ptr, size_t m, size_t n, size_t size) {
void** ret = malloc(m * sizeof(void*));
for(size_t i = 0; i < m; i ++) {
ret[i] = malloc(n * size);
memcpy(ret[i], (char*)ptr + i * n * size, n * size);
}
return ret;
}
void** cig_transpose(void** ptr, size_t m, size_t n, size_t size);
#define transpose(ptr, m, n, size) (void*)cig_transpose((void**)(ptr), m, n, size)
// === Basic Linear Algebra ===
/*
Matrices are column-major, to be consistent with Matlab/Octave.
indexing for MxN matrix A
A(i, j) = A[i + j * M]
*/
static inline FP_TYPE* zeros(int m, int n) {
return calloc(m * n, sizeof(FP_TYPE));
}
static inline FP_TYPE* eye(int n) {
FP_TYPE* A = zeros(n, n);
for(int i = 0; i < n; i ++)
A[i + n * i] = 1.0;
return A;
}
// In-place partial pivoting, allocates & returns permutation vector.
int* cig_ppivot(FP_TYPE* A, int n);
// In-place row permutation.
void cig_permm(FP_TYPE* A, int* perm, int m, int n);
// In-place LU decomposition, need pivoting first.
void cig_lu(FP_TYPE* A, int n);
// In-place LU substitution, modifies b into x.
void cig_lusolve(FP_TYPE* LU, FP_TYPE* b, int n);
static inline int* ppivot(FP_TYPE* A, int n) {
return cig_ppivot(A, n);
}
static inline void permm(FP_TYPE* A, int* perm, int m, int n) {
cig_permm(A, perm, m, n);
}
// In-place vector permutation
static inline void permv(FP_TYPE* x, int* perm, int n) {
for(int i = 0; i < n; i ++) {
int permidx = perm[i];
FP_TYPE tmp = x[i];
x[i] = x[permidx];
x[permidx] = tmp;
}
}
static inline void lu(FP_TYPE* A, int n) {
cig_lu(A, n);
}
static inline void lusolve(FP_TYPE* LU, FP_TYPE* b, int n) {
cig_lusolve(LU, b, n);
}
void cig_matmul(FP_TYPE* A, FP_TYPE* B, FP_TYPE* C, int m, int n, int l);
void cig_mvecmul(FP_TYPE* A, FP_TYPE* x, FP_TYPE* b, int m, int n);
// A (m x n) times B (n * l) -> C (m * l)
static inline void matmul(FP_TYPE* A, FP_TYPE* B, FP_TYPE* C, int m, int n, int l) {
cig_matmul(A, B, C, m, n, l);
}
// A (m x n) times x (n * 1) -> b (m * 1)
static inline void mvecmul(FP_TYPE* A, FP_TYPE* x, FP_TYPE* b, int m, int n) {
cig_mvecmul(A, x, b, n, n);
}
static inline FP_TYPE dot(FP_TYPE* x, FP_TYPE* y, int n) {
FP_TYPE sum = 0;
for(int i = 0; i < n; i ++)
sum += x[i] * y[i];
return sum;
}
// === Audio I/O ===
FP_TYPE* wavread(char* filename, int* fs, int* nbit, int* nx);
void wavwrite(FP_TYPE* y, int ny, int fs, int nbit, char* filename);
FP_TYPE* wavread_fp(FILE* fin, int* fs, int* nbit, int* nx);
void wavwrite_fp(FP_TYPE* y, int ny, int fs, int nbit, FILE* fout);
// === General DSP routines ===
static inline FP_TYPE* fetch_frame(FP_TYPE* x, int nx, int center, int nf) {
FP_TYPE* y = malloc(nf * sizeof(FP_TYPE));
for(int i = 0; i < nf; i ++) {
int isrc = center + i - nf / 2;
y[i] = (isrc >= 0 && isrc < nx) ? x[isrc] : 0;
}
return y;
}
// generate a sinusoid given frequency, amplitude and its phase at n/2 position
static inline FP_TYPE* gensin(FP_TYPE freq, FP_TYPE ampl, FP_TYPE phse, int n, int fs) {
FP_TYPE tpffs = 2.0 * M_PI / fs * freq;
FP_TYPE c = 2.0 * cos_3(tpffs);
FP_TYPE* s = calloc(n, sizeof(FP_TYPE));
s[0] = cos_3(tpffs * (- n / 2) + phse);
s[1] = cos_3(tpffs * (- n / 2 + 1) + phse);
for(int t = 2; t < n; t ++) {
s[t] = c * s[t - 1] - s[t - 2];
}
return s;
}
FP_TYPE* cig_gensins(FP_TYPE* freq, FP_TYPE* ampl, FP_TYPE* phse,
int nsin, int fs, int n);
static inline FP_TYPE* gensins(FP_TYPE* freq, FP_TYPE* ampl, FP_TYPE* phse,
int nsin, int fs, int n) {
return cig_gensins(freq, ampl, phse, nsin, fs, n);
}
static inline FP_TYPE* boxcar(int n) {
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE));
for(int i = 0; i < n; i ++)
ret[i] = 1.0;
return ret;
}
#define CIG_DEF_HANNING(fname, cosfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
for(int i = 0; i < n; i ++) \
ret[i] = 0.5 * (1 - cosfunc(2 * M_PI * i / (n - 1))); \
return ret; \
}
CIG_DEF_HANNING(hanning, cos_3);
CIG_DEF_HANNING(hanning_2, cos_2);
#define CIG_DEF_HAMMING(fname, cosfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
for(int i = 0; i < n; i ++) \
ret[i] = 0.54 - 0.46 * cosfunc(2 * M_PI * i / (n - 1)); \
return ret; \
}
CIG_DEF_HAMMING(hamming, cos_3);
CIG_DEF_HAMMING(hamming_2, cos_2);
#define CIG_DEF_MLTSINE(fname, sinfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
for(int i = 0; i < n; i ++) \
ret[i] = sinfunc(M_PI / n * (i + 0.5)); \
return ret; \
}
CIG_DEF_MLTSINE(mltsine, sin_3);
CIG_DEF_MLTSINE(mltsine_2, sin_2);
// 92dB side lobe
#define CIG_DEF_BLACKMAN_HARRIS(fname, cosfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
const FP_TYPE a0 = 0.35875; \
const FP_TYPE a1 = 0.48829; \
const FP_TYPE a2 = 0.14128; \
const FP_TYPE a3 = 0.01168; \
for(int i = 0; i < n; i ++) \
ret[i] = a0 - a1 * cosfunc(2.0 * M_PI * i / n) + \
a2 * cosfunc(4.0 * M_PI * i / n) - \
a3 * cosfunc(6.0 * M_PI * i / n); \
return ret; \
}
CIG_DEF_BLACKMAN_HARRIS(blackman_harris, cos_3);
CIG_DEF_BLACKMAN_HARRIS(blackman_harris_2, cos_2);
// 98dB side lobe, Prof. Kawahara's favorite
#define CIG_DEF_NUTTALL98(fname, cosfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
const FP_TYPE a0 = 0.3635819; \
const FP_TYPE a1 = 0.4891775; \
const FP_TYPE a2 = 0.1365995; \
const FP_TYPE a3 = 0.0106411; \
for(int i = 0; i < n; i ++) \
ret[i] = a0 - a1 * cosfunc(2.0 * M_PI * i / n) + \
a2 * cosfunc(4.0 * M_PI * i / n) - \
a3 * cosfunc(6.0 * M_PI * i / n); \
return ret; \
}
CIG_DEF_NUTTALL98(nuttall98, cos_3);
CIG_DEF_NUTTALL98(nuttall98_2, cos_2);
#define CIG_DEF_BLACKMAN(fname, cosfunc) \
static inline FP_TYPE* fname(int n) { \
FP_TYPE* ret = malloc(n * sizeof(FP_TYPE)); \
const FP_TYPE a0 = 0.42; \
const FP_TYPE a1 = 0.5; \
const FP_TYPE a2 = 0.08; \
for(int i = 0; i < n; i ++) \
ret[i] = a0 - a1 * cos_3(2.0 * M_PI * i / n) + \
a2 * cos_3(4.0 * M_PI * i / n); \
return ret; \
}
CIG_DEF_BLACKMAN(blackman, cos_3);
CIG_DEF_BLACKMAN(blackman_2, cos_2);
void cig_fft(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi,
int n, FP_TYPE* buffer, FP_TYPE mode);
static inline void fft(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi,
int n, FP_TYPE* buffer) {
cig_fft(xr, xi, yr, yi, n, buffer, -1.0);
}
static inline void ifft(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi,
int n, FP_TYPE* buffer) {
cig_fft(xr, xi, yr, yi, n, buffer, 1.0);
}
void cig_czt(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi, FP_TYPE omega0, int n);
static inline void czt(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi,
FP_TYPE omega0, int n) {
cig_czt(xr, xi, yr, yi, omega0, n);
}
static inline void iczt(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi,
FP_TYPE omega0, int n) {
cig_czt(xr, xi, yr, yi, -omega0, n);
if(yr != NULL)
for(int i = 0; i < n; i ++)
yr[i] /= n;
if(yi != NULL)
for(int i = 0; i < n; i ++)
yi[i] /= n;
}
void cig_idft(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi, int n);
static inline void idft(FP_TYPE* xr, FP_TYPE* xi, FP_TYPE* yr, FP_TYPE* yi, int n) {
cig_idft(xr, xi, yr, yi, n);
}
FP_TYPE* cig_dct(FP_TYPE* x, int nx);
static inline FP_TYPE* dct(FP_TYPE* x, int nx) {
return cig_dct(x, nx);
}
static inline FP_TYPE* fftshift(FP_TYPE* x, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
int halfs = n / 2;
int halfl = (n + 1) / 2;
for(int i = 0; i < halfs; i ++)
y[i] = x[i + halfl];
for(int i = 0; i < halfl; i ++)
y[i + halfs] = x[i];
return y;
}
static inline FP_TYPE* unwrap(FP_TYPE* x, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
y[0] = x[0];
for(int i = 1; i < n; i ++) {
if(fabs(x[i] - x[i - 1]) > M_PI)
y[i] = y[i - 1] + x[i] - (x[i - 1] + 2.0 * M_PI * (x[i] > x[i - 1] ? 1.0 : -1.0));
else
y[i] = y[i - 1] + x[i] - x[i - 1];
}
return y;
}
static inline FP_TYPE wrap(FP_TYPE x) {
return x - round(x / 2.0 / M_PI) * 2.0 * M_PI;
}
static inline FP_TYPE* diff(FP_TYPE* x, int nx) {
FP_TYPE* y = malloc(nx * sizeof(FP_TYPE));
y[0] = x[0];
for(int i = 1; i < nx; i ++)
y[i] = x[i] - x[i - 1];
return y;
}
static inline FP_TYPE* cumsum(FP_TYPE* x, int nx) {
FP_TYPE* y = malloc(nx * sizeof(FP_TYPE));
y[0] = x[0];
for(int i = 1; i < nx; i ++)
y[i] = y[i - 1] + x[i];
return y;
}
static inline FP_TYPE* flip(FP_TYPE* x, int nx) {
FP_TYPE* y = malloc(nx * sizeof(FP_TYPE));
for(int i = 0; i < nx; i ++)
y[i] = x[nx - i - 1];
return y;
}
static inline FP_TYPE* abscplx(FP_TYPE* xr, FP_TYPE* xi, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
for(int i = 0; i < n; i ++)
y[i] = sqrt(xr[i] * xr[i] + xi[i] * xi[i]);
return y;
}
static inline FP_TYPE* argcplx(FP_TYPE* xr, FP_TYPE* xi, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
for(int i = 0; i < n; i ++)
y[i] = atan2_3(xi[i], xr[i]);
return y;
}
static inline FP_TYPE* polar2real(FP_TYPE* xabs, FP_TYPE* xarg, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
for(int i = 0; i < n; i ++)
y[i] = xabs[i] * cos_2(xarg[i]);
return y;
}
static inline FP_TYPE* polar2imag(FP_TYPE* xabs, FP_TYPE* xarg, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));
for(int i = 0; i < n; i ++)
y[i] = xabs[i] * sin_2(xarg[i]);
return y;
}
static inline FP_TYPE phase_diff(FP_TYPE p1, FP_TYPE p2) {
if(p2 > p1) p1 += (int)((p2 - p1) / 2.0 / M_PI + 1) * 2.0 * M_PI;
return fmod(p1 - p2 + M_PI, M_PI * 2.0) - M_PI;
}
static inline void complete_symm(FP_TYPE* x, int n) {
if(n / 2 == (n + 1) / 2) // even
x[n / 2] = x[n / 2 - 1];
for(int i = n / 2 + 1; i < n; i ++)
x[i] = x[n - i];
}
static inline void complete_asymm(FP_TYPE* x, int n) {
if(n / 2 == (n + 1) / 2) // even
x[n / 2] = x[n / 2 - 1];
for(int i = n / 2 + 1; i < n; i ++)
x[i] = -x[n - i];
}
static inline FP_TYPE* rceps(FP_TYPE* S, int nfft) {
FP_TYPE* buff = malloc(nfft * 4 * sizeof(FP_TYPE));
FP_TYPE* C = buff;
FP_TYPE* S_symm = buff + nfft;
FP_TYPE* fftbuff = buff + nfft * 2;
for(int i = 0; i < nfft / 2 + 1; i ++)
S_symm[i] = S[i];
complete_symm(S_symm, nfft);
ifft(S_symm, NULL, C, NULL, nfft, fftbuff);
return realloc(C, nfft * sizeof(FP_TYPE));
}
static inline FP_TYPE* irceps(FP_TYPE* C, int n, int nfft) {
FP_TYPE* buff = malloc(nfft * 4 * sizeof(FP_TYPE));
FP_TYPE* S = buff;
FP_TYPE* C_symm = buff + nfft;
FP_TYPE* fftbuff = buff + nfft * 2;
for(int i = 0; i < n; i ++)
C_symm[i] = C[i];
for(int i = n; i < nfft / 2 + 1; i ++)
C_symm[i] = 0;
complete_symm(C_symm, nfft);
fft(C_symm, NULL, S, NULL, nfft, fftbuff);
return realloc(S, nfft * sizeof(FP_TYPE));
}
static inline FP_TYPE* minphase(FP_TYPE* S, int nfft) {
FP_TYPE* buff = malloc(nfft * 4 * sizeof(FP_TYPE));
FP_TYPE* S_symm = buff;
FP_TYPE* C = buff + nfft;
FP_TYPE* fftbuff = buff + nfft * 2;
for(int i = 0; i < nfft / 2 + 1; i ++)
S_symm[i] = S[i];
complete_symm(S_symm, nfft);
ifft(S_symm, NULL, C, NULL, nfft, fftbuff);
for(int i = 1; i < nfft / 2 + 1; i ++)
C[i] *= 2.0;
for(int i = nfft / 2 + 2; i < nfft; i ++)
C[i] = 0.0;
fft(C, NULL, NULL, S_symm, nfft, fftbuff);
return realloc(S_symm, nfft * sizeof(FP_TYPE));
}
FP_TYPE* cig_winfir(int order, FP_TYPE cutoff, FP_TYPE cutoff2,
char* type, char* window);
static inline FP_TYPE* fir1(int order, FP_TYPE cutoff, char* type, char* window) {
return cig_winfir(order, cutoff / 2.0, 0, type, window);
}
static inline FP_TYPE* fir1bp(int order, FP_TYPE cutoff_low, FP_TYPE cutoff_high,
char* window) {
return cig_winfir(order, cutoff_low / 2.0, cutoff_high / 2.0, "bandpass", window);
}
FP_TYPE* cig_convolution(FP_TYPE* x, FP_TYPE* h, int nx, int nh);
static inline FP_TYPE* conv(FP_TYPE* x, FP_TYPE* h, int nx, int nh) {
return cig_convolution(x, h, nx, nh);
}
FP_TYPE* cig_filter(FP_TYPE* b, int nb, FP_TYPE* a, int na, FP_TYPE* x, int nx);
static inline FP_TYPE* filter(FP_TYPE* b, int nb, FP_TYPE* a, int na,
FP_TYPE* x, int nx) {
return cig_filter(b, nb, a, na, x, nx);
}
static inline FP_TYPE* filtfilt(FP_TYPE* b, int nb, FP_TYPE* a, int na,
FP_TYPE* x, int nx) {
FP_TYPE* y = cig_filter(b, nb, a, na, x, nx);
FP_TYPE* z = malloc(nx * sizeof(FP_TYPE));
for(int i = 0; i < nx; i ++) z[i] = y[nx - i - 1]; // flip the signal
FP_TYPE* y2 = cig_filter(b, nb, a, na, z, nx); // fliter again
for(int i = 0; i < nx; i ++) y[i] = y2[nx - i - 1]; // flip back the signal
free(z);
free(y2);
return y;
}
// 1d time-varying Kalman filtering, returns E[x_t | z_1, ..., z_t];
// writes Var[x_t | z_1, ..., z_t] into P;
// writes total log likelihood into L if L != NULL
FP_TYPE* cig_kalmanf1d(FP_TYPE* z, FP_TYPE* Q, FP_TYPE* R, int nz, FP_TYPE x0,
FP_TYPE* P, FP_TYPE* L);
static inline FP_TYPE* kalmanf1d(FP_TYPE* z, FP_TYPE* Q, FP_TYPE* R, int nz,
FP_TYPE* P, FP_TYPE* L) {
return cig_kalmanf1d(z, Q, R, nz, z[0], P, L);
}
// 1d time-varying Kalman smoothing, returns E[x_t | z_1, ..., z_T]
FP_TYPE* cig_kalmans1d(FP_TYPE* y, FP_TYPE* P, FP_TYPE* Q, int ny);
static inline FP_TYPE* kalmans1d(FP_TYPE* y, FP_TYPE* P, FP_TYPE* Q, int ny) {
return cig_kalmans1d(y, P, Q, ny);
}
// The following lists different forms of an all-pole filter, which might be helpful
// when using LPC-related functions.
// a[0] x[n] = u[n] - a[1] x[n - 1] - a[2] x[n - 2] - a[3] x[n - 3] - ... recurrent form
// a[0] X(z) = U(z) - (a[1] z^-1 + a[2] z^-2 + a[3] z^-3 + ...) X(z) z-transform
// H(z) = X(z) / U(z) = 1 / (a[0] + a[1] z^-1 + a[2] z^-2 + a[3] z^-3 + ...) transfer function
// = z^N / (a[0] z^p + a[1] z^p-1 + a[2] z^p-2 + ... + a[p - 1] z + a[p]) anti-causal
// = z^N / [a[0] (z - p[1]) (z - p[2]) (z - p[3]) ... (z - p[p])] factorization
// = 1 / [a[0] (1 - p[1] z^-1) (1 - p[2] z^-1) ... (1 - p[p] z^-1)] poles
// Matlab functions tf2zp/tf2zpk are equivalent to respectively calling roots() on
// numerator and denominator coefficients (you might want to first normalize the
// zero-order term to get the gain). For the sake of simplicity they are not going
// to be implemented.
// R: autocorrelation; returns n sized array of AR coefficients
FP_TYPE* cig_levinson(FP_TYPE* R, int n);
static inline FP_TYPE* levinson(FP_TYPE* R, int n) {
return cig_levinson(R, n);
}
// Note: length of returned array is p+1 (since polynomial of order p has p+1 terms)
static inline FP_TYPE* lpc(FP_TYPE* x, int nx, int p, FP_TYPE** R_out) {
if(p + 1 > nx) return NULL;
FP_TYPE* R = cig_xcorr(x, x, nx, p + 1);
FP_TYPE* a = cig_levinson(R, p + 1);
if(R_out != NULL)
*R_out = R;
else
free(R);
return a;
}
// LPC from magnitude spectrum
static inline FP_TYPE* flpc(FP_TYPE* S, int ns, int p, FP_TYPE** R_out) {
int nfft = pow(2, ceil(log2(ns - 1) + 1));
FP_TYPE* tmp = calloc(nfft * 4, sizeof(FP_TYPE));
FP_TYPE* R = tmp;
FP_TYPE* Xsqr = tmp + nfft;
FP_TYPE* fftbuff = tmp + nfft * 2;
for(int j = 0; j < ns; j ++)
Xsqr[j] = S[j] * S[j];
complete_symm(Xsqr, nfft);
ifft(Xsqr, NULL, R, NULL, nfft, fftbuff);
FP_TYPE* a = cig_levinson(R, p + 1);
if(R_out != NULL)
*R_out = realloc(tmp, (p + 1) * sizeof(FP_TYPE));
else
free(tmp);
return a;
}
static inline FP_TYPE lpgain(FP_TYPE* a, FP_TYPE* R, int n) {
FP_TYPE g = 0;
for(int i = 0; i < n; i ++)
g += a[i] * R[i];
return sqrt(g);
}
static inline FP_TYPE* lpspec(FP_TYPE* a, FP_TYPE gain, int n, int nfft) {
FP_TYPE* buff = malloc(nfft * 5 * sizeof(FP_TYPE));
FP_TYPE* Sr = buff;
FP_TYPE* Si = buff + nfft;
FP_TYPE* A = buff + nfft * 2;
FP_TYPE* fftbuff = buff + nfft * 3;
for(int i = 0; i < n; i ++)
A[i] = a[i];
for(int i = n; i < nfft; i ++)
A[i] = 0;
fft(A, NULL, Sr, Si, nfft, fftbuff);
for(int i = 0; i < nfft; i ++)
Sr[i] = gain / sqrt(Sr[i] * Sr[i] + Si[i] * Si[i]);
Sr = realloc(Sr, nfft * sizeof(FP_TYPE));
return Sr;
}
// get resonance frequencies (relative to nyquist) from LP coefficients
// returns array of frequencies in ascending order; np is number of poles;
// pole locations are written into poles if not NULL.
static inline FP_TYPE* lpresf(FP_TYPE* a, int n, cplx* poles, int* np) {
cplx* r = rootsr(a, n);
FP_TYPE* freqs = malloc((n - 1) * sizeof(FP_TYPE));
*np = 0;
for(int i = 0; i < n - 1; i ++) {
FP_TYPE f = atan2_2(r[i].imag, r[i].real) / M_PI;
if(f > 0.001 && f < 0.999) { // ignore real poles and negative frequencies
r[*np] = r[i];
freqs[*np] = f;
(*np) ++;
}
}
int* freqidx = malloc((*np) * sizeof(int));
FP_TYPE* freqsort = cig_sort(freqs, *np, freqidx);
free(freqs);
if(poles != NULL) {
for(int i = 0; i < *np; i ++)
poles[i] = r[freqidx[i]];
}
free(r);
free(freqidx);
return freqsort;
}
FP_TYPE* cig_interp(FP_TYPE* xi, FP_TYPE* yi, int ni, FP_TYPE* x, int nx);
static inline FP_TYPE* interp1(FP_TYPE* xi, FP_TYPE* yi, int ni, FP_TYPE* x, int nx) {
return cig_interp(xi, yi, ni, x, nx);
}
FP_TYPE* cig_interpu(FP_TYPE xi0, FP_TYPE xi1, FP_TYPE* yi, int ni, FP_TYPE* x, int nx);
static inline FP_TYPE* interp1u(FP_TYPE xi0, FP_TYPE xi1, FP_TYPE* yi, int ni,
FP_TYPE* x, int nx) {
return cig_interpu(xi0, xi1, yi, ni, x, nx);
}
FP_TYPE* cig_sincinterpu(FP_TYPE xi0, FP_TYPE xi1, FP_TYPE* yi, int ni, FP_TYPE* x, int nx);
static inline FP_TYPE* sincinterp1u(FP_TYPE xi0, FP_TYPE xi1, FP_TYPE* yi, int ni,
FP_TYPE* x, int nx) {
return cig_sincinterpu(xi0, xi1, yi, ni, x, nx);
}
// replace discontinuties in a series with interpolated values
static inline FP_TYPE* interp_in_blank(FP_TYPE* x, int nx, FP_TYPE blank) {
FP_TYPE* x_sample = calloc(nx + 2, sizeof(FP_TYPE));
FP_TYPE* i_sample = calloc(nx + 2, sizeof(FP_TYPE));
int n = 1;
for(int i = 0; i < nx; i ++)
if(x[i] != blank || (isnan(blank) && (! isnan(x[i])))) {
x_sample[n] = x[i];
i_sample[n] = i;
n ++;
}
x_sample[0] = x_sample[1];
i_sample[0] = 0;
x_sample[n] = x_sample[n - 1];
i_sample[n] = nx;
FP_TYPE* yi = linspace(0, nx - 1, nx);
FP_TYPE* y = interp1(i_sample, x_sample, n + 2, yi, nx);
free(yi);
free(x_sample);
free(i_sample);
return y;
}
FP_TYPE* cig_medfilt(FP_TYPE* x, int nx, int order);
static inline FP_TYPE* medfilt1(FP_TYPE* x, int nx, int order) {
return cig_medfilt(x, nx, order);
}
static inline FP_TYPE* white_noise(FP_TYPE amplitude, int n) {
FP_TYPE* y = malloc(n * sizeof(FP_TYPE));