-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
781 lines (633 loc) · 35.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
import json
import jsonpickle
import os
from time import sleep
from typing import List, Dict, Optional
import copy
import random
import math
import torch
# torch.multiprocessing.set_start_method('spawn')
import torch.nn as nn
import numpy as np
from sklearn.metrics import f1_score
from pathos.multiprocessing import ProcessingPool as Pool
import multiprocessing as mp
import pathos.multiprocessing as pathosmp
import multiprocess.context as ctx
ctx._force_start_method('spawn')
from torch.utils.data import RandomSampler, DataLoader, SequentialSampler, Dataset
from tqdm import trange, tqdm
from transformers import InputExample, AdamW, get_linear_schedule_with_warmup
from transformers.data.metrics import simple_accuracy
from utils import tprint, exact_match
from dataloader import TASK_CLASSES, MODEL_CLASSES
class DictDataset(Dataset):
"""A dataset of tensors that uses a dictionary for key-value mappings"""
def __init__(self, tensors):
self.data = tensors
def __getitem__(self, index):
return {key: tensor[index] for key, tensor in self.data.items()}
def __len__(self):
key0 = list(self.data.keys())[0]
return len(self.data[key0])
class ContinuousPrompt(torch.nn.Module):
def __init__(self, args, tokenizer):
super(ContinuousPrompt, self).__init__()
self.config = args
self.tokenizer = tokenizer
config_class = MODEL_CLASSES[self.config.pretrained_model]['config']
pretrained_model_name_or_path = args.model_type
model_config = config_class.from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path,
use_cache=False)
model_class = MODEL_CLASSES[self.config.pretrained_model]['mlm']
self.model = model_class.from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path,
config=model_config)
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, labels=None,
output_hidden_states=False):
return self.model(input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
token_type_ids=token_type_ids,
output_hidden_states=output_hidden_states)
class TransformerModelWrapper:
"""A wrapper around a Transformer-based language model."""
def __init__(self, args):
self.config = args
tokenizer_class = MODEL_CLASSES[self.config.pretrained_model]['tokenizer']
self.tokenizer = tokenizer_class.from_pretrained(
pretrained_model_name_or_path=args.model_type)
self.model = ContinuousPrompt(args, self.tokenizer)
self.prompt_template = args.prompt_template
@classmethod
def generate_verbalizer(cls, label_map):
verbalizer = {}
except_words = ['the', '&', 'and', ]
convert_words = {}
for label in label_map.keys():
answers = label.split()
for word in except_words:
if word in answers:
answers.remove(word)
for word in convert_words.keys():
if word in answers:
answers.remove(word)
answers.append(convert_words[word])
answers = [' ' + answer.lower() for answer in answers]
verbalizer[label] = answers
return verbalizer
def refresh_label_map(self, label_map):
self.label_map = label_map
self.verbalizer = self.generate_verbalizer(self.label_map)
self.metric_label_map = {'relevant consistent similar': 0, 'irrelevant inconsistent different': 1}
self.metric_verbalizer = self.generate_verbalizer(self.metric_label_map)
self.metric_mlm_logits_to_answer_logits_tensor = self._build_mlm_logits_to_cls_logits_tensor()
def save(self, path: str):
tprint("Saving models.")
model_to_save = self.model.module if hasattr(self.model, 'module') else self.model
model_to_save.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
self._save_config(path)
@classmethod
def from_pretrained(cls, path: str):
"""Load a pretrained wrapper from a given path."""
wrapper = TransformerModelWrapper.__new__(TransformerModelWrapper)
wrapper.config = wrapper._load_config(path)
tokenizer_class = MODEL_CLASSES[wrapper.config.pretrained_model]['tokenizer']
wrapper.tokenizer = tokenizer_class.from_pretrained(path)
wrapper.model = ContinuousPrompt(wrapper.config, wrapper.tokenizer)
model_class = MODEL_CLASSES[wrapper.config.pretrained_model]['mlm']
wrapper.model.model = model_class.from_pretrained(path)
wrapper.model.cuda()
return wrapper
def _save_config(self, path: str):
with open(os.path.join(path, 'wrapper_config.json'), 'w') as f:
f.write(jsonpickle.encode(self.config))
@staticmethod
def _load_config(path: str):
with open(os.path.join(path, 'wrapper_config.json'), 'r') as f:
return jsonpickle.decode(f.read())
def run_single_episode(self,
episode,
num,
k_shot: int = 5,
batch_size: int = 8,
n_adapt_epochs: int = 3,
gradient_accumulation_steps: int = 1,
weight_decay: float = 0.0, #
lm_learning_rate: float = 1e-5,
adam_epsilon: float = 1e-8,
max_grad_norm: float = 1,
):
task_wrapper = self.__class__(self.config)
label_map = {label: i for i, label in enumerate(episode['labels'])}
task_wrapper.refresh_label_map(label_map)
train_dataset, eval_dataset_paths, pivot_dataset = task_wrapper.build_dataset(episode, num)
# Check if there exists a model trained under the same setting.
output_dir = task_wrapper.config.output_dir + str(num) + 'set'
os.makedirs(output_dir, exist_ok=True)
pretrained_model_path = os.path.join(output_dir, 'wrapper_config.json')
if os.path.exists(pretrained_model_path):
task_wrapper = task_wrapper.from_pretrained(output_dir)
task_wrapper.refresh_label_map(label_map)
task_wrapper.config.pivot = self.config.pivot
else:
train_batch_size = batch_size
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=train_batch_size, collate_fn=task_wrapper.collate_fn)
t_total = n_adapt_epochs * len(train_dataloader)
warmup_steps = int(t_total / 30)
cur_model = task_wrapper.model.module if hasattr(task_wrapper.model, 'module') else task_wrapper.model
optimizer, scheduler = task_wrapper.prepare_optimizer_scheduler(
cur_model, t_total, weight_decay, lm_learning_rate, adam_epsilon, warmup_steps)
task_wrapper.model.cuda()
# Accelerated training with mixed precision
scaler = torch.cuda.amp.GradScaler(init_scale=256)
task_wrapper.model.zero_grad()
for i in trange(n_adapt_epochs):
for step, batch in enumerate(train_dataloader):
task_wrapper.model.train()
with torch.cuda.amp.autocast(dtype=torch.float16):
batch = {k: t.cuda() for k, t in batch.items()}
loss = task_wrapper.mlm_train_step(batch)
if gradient_accumulation_steps > 1:
loss = loss / gradient_accumulation_steps
try:
scaler.scale(loss).backward()
except Exception as e:
print(e)
if (step + 1) % gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(task_wrapper.model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
task_wrapper.model.zero_grad()
task_wrapper.save(output_dir)
task_wrapper.model.cuda()
task_wrapper.model.eval()
# Compute the representativeness score for each sample
pivot_batch_size = batch_size
pivot_sampler = RandomSampler(pivot_dataset)
pivot_dataloader = DataLoader(pivot_dataset, sampler=pivot_sampler, batch_size=pivot_batch_size,
collate_fn=task_wrapper.collate_fn)
preds = None
for step, batch in enumerate(pivot_dataloader):
with torch.no_grad(), torch.inference_mode(), torch.cuda.amp.autocast():
batch = {k: t.cuda() for k, t in batch.items()}
logits = task_wrapper.mlm_eval_step(batch)
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
# positive_scores stands for intra-class relevance scores, while negative_scores is inter-class relevance scores
representativeness = []
for i in range(len(episode['support_set'])):
offset = i * len(episode['support_set'])
positive_scores = [preds[offset+j, 0] - preds[offset+j, 1] for j in range(self.config.k_shot)]
negative_scores = [preds[offset+j, 0] - preds[offset+j, 1] for j in range(self.config.k_shot, len(episode['support_set']))]
positive_score = sum(positive_scores) / len(positive_scores)
negative_score = sum(negative_scores) / len(negative_scores)
representativeness.append(positive_score - negative_score)
# Select representative samples for each label
pivot_data = []
for i in range(len(episode['support_set']) // self.config.k_shot):
this_label_representativeness = representativeness[i*self.config.k_shot: (i+1)*self.config.k_shot]
this_label_representativeness = [(score, i) for i, score in enumerate(this_label_representativeness)]
this_label_representativeness.sort(reverse=True)
for j in range(self.config.pivot):
pivot_data.append(episode['support_set'][i * self.config.k_shot + this_label_representativeness[j][1]])
n_way = len(episode['support_set']) // k_shot
if self.config.pivot > 0:
pivot_test_dataset_paths = task_wrapper.build_pivot_dataset(pivot_data, episode['query_set'], num)
eval_dataset_paths = pivot_test_dataset_paths
episode['support_set'] = pivot_data
# Accelerate with kernl
if task_wrapper.config.kernl_accerleration != 0:
from kernl.model_optimization import optimize_model
optimize_model(task_wrapper.model.model)
# Extract samples for the inference stage which are stored in separate files
def extract_chunk_num(path):
chunk_num_string = path[path.find('set_') + 4: path.find('chunk')]
return int(chunk_num_string)
eval_dataset_paths = [[extract_chunk_num(path), path] for path in eval_dataset_paths]
eval_dataset_paths.sort()
preds = None
scores = []
query_num_offset = 0
for chunk_num, eval_dataset_path in eval_dataset_paths:
with open(eval_dataset_path) as f:
data_json_string = f.read().strip()
feature_dict = json.loads(data_json_string)
feature_dict = {k: [torch.tensor(item) for item in v] for k, v in feature_dict.items()}
eval_dataset = DictDataset(feature_dict)
eval_batch_size = batch_size
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=eval_batch_size, collate_fn=task_wrapper.collate_fn)
eval_dataloader = tqdm(eval_dataloader, desc="Chunk" + str(chunk_num))
for step, batch in enumerate(eval_dataloader):
with torch.no_grad(), torch.inference_mode(), torch.cuda.amp.autocast():
batch = {k: t.cuda() for k, t in batch.items()}
logits = task_wrapper.mlm_eval_step(batch)
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
final_preds, out_label_ids = [], []
i = 0 # i stands for query sample index
# label_convert maps training sample index to its corresponding label index
label_convert = {}
for ii, sample in enumerate(episode['support_set']):
label_convert[ii] = int(sample['label'])
# Pool relevance scores with mean pooling
if self.config.pooling == 'mean':
while i <= preds.shape[0] - len(episode['support_set']):
this_pred = [[] for _ in range(n_way)]
for j in range(len(episode['support_set'])):
try:
this_pred[label_convert[j]].append(preds[i + j][0] - preds[i + j][1])
except Exception as e:
print(e)
this_pred = [sum(scores)/len(scores) for scores in this_pred]
final_preds.append(this_pred)
out_label_ids.append(int(episode['query_set'][query_num_offset+i//len(episode['support_set'])]['label']))
i += len(episode['support_set'])
final_preds = np.array(final_preds)
predictions = np.argmax(final_preds, axis=1)
out_label_ids = np.array(out_label_ids)
scores.append([simple_accuracy(predictions, out_label_ids), i//len(episode['support_set'])])
preds = preds[i:]
query_num_offset += i//len(episode['support_set'])
# Pool relevance scores with max pooling
elif self.config.pooling == 'max':
while i <= preds.shape[0] - len(episode['support_set']):
this_pred = [-1e5] * n_way
for j in range(len(episode['support_set'])):
# this_pred[j // k_shot] = max(this_pred[j // k_shot], preds[i+j][0] - preds[i+j][1])
this_pred[label_convert[j]] = max(this_pred[label_convert[j]], preds[i+j][0] - preds[i+j][1])
final_preds.append(this_pred)
out_label_ids.append(int(episode['query_set'][query_num_offset+i//len(episode['support_set'])]['label']))
i += len(episode['support_set'])
final_preds = np.array(final_preds)
predictions = np.argmax(final_preds, axis=1)
out_label_ids = np.array(out_label_ids)
scores.append([simple_accuracy(predictions, out_label_ids), i//len(episode['support_set'])])
preds = preds[i:]
query_num_offset += i//len(episode['support_set'])
# Pool relevance scores with KNN pooling
else:
while i <= preds.shape[0] - len(episode['support_set']):
similarities = []
for j in range(len(episode['support_set'])):
similarities.append((preds[i+j][0] - preds[i+j][1], j))
similarities.sort(reverse=True)
knn_pool = [0] * n_way
for j in range(len(similarities)//2):
knn_pool[label_convert[similarities[j][1]]] += 1
# If several labels take up the same proportion of topk relevant samples, select the training
# sample achieving the highest relevance score and classify this query sample to its class
sorted_knn_pool = sorted(knn_pool, reverse=True)
if sorted_knn_pool[0] == sorted_knn_pool[1]:
for item in similarities:
if knn_pool[label_convert[item[1]]] == sorted_knn_pool[0]:
knn_pool[label_convert[item[1]]] += 1
break
final_preds.append(knn_pool)
out_label_ids.append(int(episode['query_set'][query_num_offset+i//len(episode['support_set'])]['label']))
i += len(episode['support_set'])
final_preds = np.array(final_preds)
predictions = np.argmax(final_preds, axis=1)
out_label_ids = np.array(out_label_ids)
scores.append([simple_accuracy(predictions, out_label_ids), i//len(episode['support_set'])])
preds = preds[i:]
query_num_offset += i//len(episode['support_set'])
scores = {'acc': sum([score*num for score, num in scores]) / sum([num for score, num in scores])}
print(scores)
return scores
def run(self,
data: List[InputExample],
start_episode=0,
num_episodes=0,
batch_size: int = 8,
n_adapt_epochs: int = 3,
gradient_accumulation_steps: int = 1,
weight_decay: float = 0.1, #
lm_learning_rate: float = 1e-5,
adam_epsilon: float = 1e-8,
max_grad_norm: float = 1,
):
scores = []
episode_iter = tqdm(data[start_episode: start_episode+num_episodes], desc="Episode")
for num, episode in enumerate(episode_iter):
episode_score = self.run_single_episode(episode=episode,
num=num,
k_shot=self.config.k_shot,
batch_size=batch_size,
n_adapt_epochs=n_adapt_epochs,
lm_learning_rate=lm_learning_rate,
gradient_accumulation_steps=gradient_accumulation_steps,
weight_decay=weight_decay, #
adam_epsilon=adam_epsilon,
max_grad_norm=max_grad_norm,
)
scores.append(episode_score)
print(f"{start_episode} set score: {episode_score}")
torch.cuda.empty_cache()
def mean(nums):
return sum(nums) / len(nums)
average_scores = {}
for key in scores[0].keys():
average_scores[key] = mean([episode_score[key] for episode_score in scores])
return average_scores, scores
def save_features(self, feature_dict, path):
serializable_feature_dict = {k: [item.numpy().tolist() for item in v] for k, v in feature_dict.items()}
feature_dict_json_string = json.dumps(serializable_feature_dict)
with open(path, 'w') as f:
f.write(feature_dict_json_string)
def build_dataset(self, episode, set_num):
base_dir = os.path.join(self.config.data_path, 'TextClassification', self.config.dataset,
str(self.config.k_shot) + 'shot' + str(self.config.prompt_template) + 'template')
os.makedirs(base_dir, exist_ok=True)
# Construct training data
encoded_train_data_path = os.path.join(base_dir, 'encoded_train_data_'+str(set_num)+'set.json')
if os.path.exists(encoded_train_data_path):
with open(encoded_train_data_path) as f:
data_json_string = f.read().strip()
feature_dict = json.loads(data_json_string)
feature_dict = {k: [torch.tensor(item) for item in v] for k, v in feature_dict.items()}
train_dataset = DictDataset(feature_dict)
else:
data = []
for target_item in episode['support_set']:
for source_item in episode['support_set']:
metric_keys = list(self.metric_verbalizer.keys())
label = metric_keys[0] if source_item['label'] == target_item['label'] else metric_keys[1]
item = {
'text1': source_item['raw'],
'text2': target_item['raw'],
'label': label
}
data.append(item)
train_dataset, train_feature_dict = self._generate_dataset(data=data)
self.save_features(train_feature_dict, encoded_train_data_path)
# Construct training data for pivot sample selection
encoded_pivot_data_path = os.path.join(base_dir, 'encoded_' + str(self.config.pivot) + 'pivot_data_' + str(set_num) + 'set.json')
if os.path.exists(encoded_pivot_data_path):
with open(encoded_pivot_data_path) as f:
data_json_string = f.read().strip()
feature_dict = json.loads(data_json_string)
feature_dict = {k: [torch.tensor(item) for item in v] for k, v in feature_dict.items()}
pivot_dataset = DictDataset(feature_dict)
else:
data = []
for target_item in episode['support_set']:
metric_keys = list(self.metric_verbalizer.keys())
for source_item in episode['support_set']:
label = metric_keys[0] if source_item['label'] == target_item['label'] else metric_keys[1]
item = {
'text1': source_item['raw'],
'text2': target_item['raw'],
'label': label
}
data.append(item)
# Move intra-class text pairs to the start position, and left inter-class text pairs behind
cur = len(data) - len(episode['support_set'])
for i in range(len(data) - len(episode['support_set']), len(data)):
if data[i]['label'] == metric_keys[0]:
data[cur], data[i] = data[i], data[cur]
cur += 1
pivot_dataset, pivot_feature_dict = self._generate_dataset(data=data)
self.save_features(pivot_feature_dict, encoded_pivot_data_path)
# Construct test data
encoded_test_data_path = os.path.join(base_dir, 'encoded_test_data_' + str(set_num) + 'set')
data = []
for target_item in episode['query_set']:
for source_item in episode['support_set']:
metric_keys = list(self.metric_verbalizer.keys())
label = metric_keys[0] if source_item['label'] == target_item['label'] else metric_keys[1]
item = {
'text1': source_item['raw'],
'text2': target_item['raw'],
'label': label
}
data.append(item)
test_dataset_paths = []
if len(data) > 100000:
# Save 100,000 samples' encoded features as a chunk
for i in range(0, len(data), 100000):
this_encoded_test_data_path = encoded_test_data_path + '_' + str(i // 100000) + 'chunk.json'
if not os.path.exists(this_encoded_test_data_path):
this_data = data[i: i + 100000]
# If the number of samples to be encoded exceeds 50,000, activate multiprocessing encoding
if len(this_data) < 50000:
test_dataset, test_feature_dict = self._generate_dataset(data=this_data)
else:
test_dataset, test_feature_dict = self._generate_dataset(data=this_data, multiprocessing=True)
self.save_features(test_feature_dict, this_encoded_test_data_path)
test_dataset_paths.append(this_encoded_test_data_path)
else:
this_encoded_test_data_path = encoded_test_data_path + '_0chunk.json'
if not os.path.exists(this_encoded_test_data_path):
test_dataset, test_feature_dict = self._generate_dataset(data=data)
self.save_features(test_feature_dict, this_encoded_test_data_path)
test_dataset_paths.append(this_encoded_test_data_path)
return train_dataset, test_dataset_paths, pivot_dataset
def build_pivot_dataset(self, pivot_data, query_data, set_num):
"""
Construct test data with pivot samples
"""
base_dir = os.path.join(self.config.data_path, 'TextClassification', self.config.dataset,
str(self.config.k_shot) + 'shot' + str(self.config.prompt_template) + 'template')
encoded_test_data_path = os.path.join(base_dir, 'encoded_' + str(self.config.pivot) + 'pivot_test_data_' + str(set_num) + 'set')
data = []
for target_item in query_data:
for source_item in pivot_data:
metric_keys = list(self.metric_verbalizer.keys())
label = metric_keys[0] if source_item['label'] == target_item['label'] else metric_keys[1]
item = {
'text1': source_item['raw'],
'text2': target_item['raw'],
'label': label
}
data.append(item)
test_dataset_paths = []
if len(data) > 100000:
for i in range(0, len(data), 100000):
this_encoded_test_data_path = encoded_test_data_path + '_' + str(i // 100000) + 'chunk.json'
if not os.path.exists(this_encoded_test_data_path):
this_data = data[i: i + 100000]
if len(this_data) < 50000:
test_dataset, test_feature_dict = self._generate_dataset(data=this_data)
else:
test_dataset, test_feature_dict = self._generate_dataset(data=this_data, multiprocessing=True)
self.save_features(test_feature_dict, this_encoded_test_data_path)
test_dataset_paths.append(this_encoded_test_data_path)
else:
this_encoded_test_data_path = encoded_test_data_path + '_0chunk.json'
if not os.path.exists(this_encoded_test_data_path):
test_dataset, test_feature_dict = self._generate_dataset(data=data)
self.save_features(test_feature_dict, this_encoded_test_data_path)
test_dataset_paths.append(this_encoded_test_data_path)
return test_dataset_paths
def collate_fn(self, batch):
"""
Pad input features to a fixed length to be processed in batches
"""
return_batch = {}
tokenizer = self.tokenizer
for key in batch[0].keys():
if len(batch[0][key].shape) == 0:
return_batch[key] = torch.stack([batch[i][key] for i in range(len(batch))])
continue
# max_seq_length = max([batch[i][key].shape[0] for i in range(len(batch))])
max_seq_length = 256 # Model accelerated with kernl requires each batch to have the same feature shape
this_tensors = torch.full((len(batch), max_seq_length), tokenizer.pad_token_id, dtype=torch.long)
for i in range(len(batch)):
this_tensors[i, :batch[i][key].shape[0]] = batch[i][key]
return_batch[key] = this_tensors
return return_batch
def _generate_dataset(self, data: list, labelled: bool = True, multiprocessing: bool = False):
features = self._convert_examples_to_features(data, labelled, multiprocessing)
feature_dict = {
'input_ids': [torch.tensor(f["input_ids"], dtype=torch.long) for this_features in features for f in this_features],
'attention_mask': [torch.tensor(f["attention_mask"], dtype=torch.long) for this_features in features for f in this_features],
'token_type_ids': [torch.tensor(f["token_type_ids"], dtype=torch.long) for this_features in features for f in this_features],
'labels': [torch.tensor(f["label"], dtype=torch.long) for this_features in features for f in this_features],
'mlm_labels': [torch.tensor(f["mlm_labels"], dtype=torch.long) for this_features in features for f in this_features],
}
return DictDataset(feature_dict), feature_dict
def _convert_examples_to_features(self, examples: list, labelled: bool = True, multiprocessing: bool = False):
tprint("start generating dataset")
if not multiprocessing:
features = []
for (ex_index, example) in enumerate(examples):
if ex_index > 0 and ex_index % 10000 == 0:
tprint("Writing example {}".format(ex_index))
input_features = self.get_input_features(example, labelled=labelled)
features.append(input_features)
features = [features]
else:
features = []
def func(examples):
features = []
for (ex_index, example) in enumerate(examples):
if ex_index > 0 and ex_index % 100000 == 0:
tprint("Writing example {}".format(ex_index))
input_features = self.get_input_features(example, labelled=labelled)
features.append(input_features)
return features
# pool = Pool(os.cpu_count())
worker_num = 20
pool = Pool(worker_num)
group_size = math.ceil(len(examples)/worker_num)
example_groups = [examples[i*group_size: (i+1)*group_size] for i in range(worker_num)]
worker = pool.imap(func, example_groups)
for this_features in worker:
features.append(this_features)
pass
tprint("finished generating dataset")
return features
def generate_item(self, example: dict, task: dict):
if hasattr(self.config, 'prompt_template'):
prompt_template = self.config.prompt_template
else:
prompt_template = 0
prompted_str = task['metric_prompt'][prompt_template](example['text1'], example['text2'])
parts = [self.tokenizer.encode(string, add_special_tokens=False) for string in prompted_str]
parts = [part[:120] for part in parts]
token_ids = [id for ids in parts for id in ids]
input_ids = self.tokenizer.build_inputs_with_special_tokens(token_ids)
sep_token_position = token_ids.index(102)
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(
token_ids_0=token_ids[: sep_token_position], token_ids_1=token_ids[sep_token_position+1:])
assert len(input_ids) == len(token_type_ids)
return input_ids, token_type_ids
def get_input_features(self, example: dict, labelled: bool):
input_ids, token_type_ids = self.generate_item(example,
TASK_CLASSES[self.config.dataset])
attention_mask = [1] * len(input_ids)
example_label = example['label']
label = self.metric_label_map[example_label] if example_label is not None else -100
if labelled:
labels = [-1] * len(input_ids)
for label_idx, input_id in enumerate(input_ids):
if input_id == self.tokenizer.mask_token_id:
labels[label_idx] = 1
mlm_labels = labels
else:
mlm_labels = [-1] * 512
return {"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"label": label,
"mlm_labels": mlm_labels}
def get_mask_positions(self, input_ids: List[int]):
labels = [-1] * len(input_ids)
for label_idx, input_id in enumerate(input_ids):
if input_id == self.tokenizer.mask_token_id:
labels[label_idx] = 1
return labels
def generate_default_inputs(self, batch: Dict[str, torch.Tensor], M=None):
inputs = {'input_ids': batch['input_ids'], 'attention_mask': batch['attention_mask']}
if self.config.pretrained_model in ['bert']:
inputs['token_type_ids'] = batch['token_type_ids']
return inputs
def mlm_train_step(self, labeled_batch: Dict[str, torch.Tensor]):
inputs = self.generate_default_inputs(labeled_batch)
mlm_labels, labels = labeled_batch['mlm_labels'], labeled_batch['labels']
outputs = self.model(**inputs, output_hidden_states=True)
prediction_scores = self.convert_mlm_logits_to_cls_logits(mlm_labels, outputs[0])
loss = nn.CrossEntropyLoss()(prediction_scores.view(-1, len(self.metric_verbalizer.keys())), labels.view(-1))
return loss
def mlm_eval_step(self, batch: Dict[str, torch.Tensor]):
inputs = self.generate_default_inputs(batch)
outputs = self.model(**inputs)
return self.convert_mlm_logits_to_cls_logits(batch['mlm_labels'], outputs[0])
def convert_mlm_logits_to_cls_logits(self, mlm_labels: torch.Tensor, logits: torch.Tensor):
masked_logits = logits[mlm_labels > 0]
cls_logits = torch.stack([self._convert_single_mlm_logits_to_cls_logits(ml) for ml in masked_logits])
return cls_logits
def _convert_single_mlm_logits_to_cls_logits(self, logits: torch.Tensor):
m2c = self.metric_mlm_logits_to_answer_logits_tensor.to(logits.device)
filler_len = torch.tensor([len(self.metric_verbalizer[label]) for label in self.metric_verbalizer.keys()],
dtype=torch.float)
filler_len = filler_len.to(logits.device)
cls_logits = logits[torch.max(torch.zeros_like(m2c), m2c)]
cls_logits = cls_logits * (m2c > 0).float()
cls_logits = cls_logits.sum(axis=1) / filler_len
return cls_logits
def _build_mlm_logits_to_cls_logits_tensor(self):
metric_label_list = self.metric_verbalizer.keys()
max_num_answers = max([len(self.metric_verbalizer[label]) for label in metric_label_list])
metric_m2c_tensor = torch.ones([len(metric_label_list), max_num_answers],
dtype=torch.long,
requires_grad=False) * -1
for label_idx, label in enumerate(metric_label_list):
answers = self.metric_verbalizer[label]
for answer_id, answer in enumerate(answers):
verbalizer_id = self.tokenizer.encode(answer, add_special_tokens=False)[0]
# verbalizer_id = get_verbalization_ids(answer, self.wrapper.tokenizer, force_single_token=True)
assert verbalizer_id != self.tokenizer.unk_token_id, "verbalization was tokenized as <UNK>"
metric_m2c_tensor[label_idx, answer_id] = verbalizer_id
return metric_m2c_tensor
def prepare_optimizer_scheduler(
self,
cur_model: torch.nn.Module,
t_total: int,
weight_decay: float = 0.0,
lm_learning_rate: float = 1e-5,
adam_epsilon: float = 1e-8,
warmup_steps: int = 0,
):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in cur_model.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in cur_model.model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=lm_learning_rate, eps=adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=t_total)
return optimizer, scheduler