-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
264 lines (226 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import matplotlib.pyplot as plt
import csv, os
from controller2d import Controller2D
from bicyclemodel import NonLinearBicycleModel, LinearBicycleModel
# waypoint file to load
WAYPOINTS_FILENAME = 'racetrack_waypoints.txt'
INTERP_DISTANCE_RES = 0.01 # distance between interpolated points
INTERP_LOOKAHEAD_DISTANCE = 20 # lookahead in meters
DIST_THRESHOLD_TO_LAST_WAYPOINT = 4.0 # some distance from last position before simulation ends
# use linear or nonlinear bicycle models
non_linear_model = False # True, False
if non_linear_model:
trajectory_path = "trajectory_non_linear.png"
speed_path = "speed_non_linear.png"
else:
trajectory_path = "trajectory_linear.png"
speed_path = "speed_linear.png"
# show the animation plot during the simulation, default is False.
show_animation = False
def main():
#############################################
# Load Waypoints
#############################################
waypoints_file = WAYPOINTS_FILENAME
with open(waypoints_file) as waypoints_file_handle:
waypoints = list(csv.reader(waypoints_file_handle,
delimiter=',',
quoting=csv.QUOTE_NONNUMERIC))
waypoints_np = np.array(waypoints)
# Linear interpolation computations, we can also use spine interpolation
wp_distance = [] # distance array
for i in range(1, waypoints_np.shape[0]):
wp_distance.append(
np.sqrt((waypoints_np[i, 0] - waypoints_np[i - 1, 0]) ** 2 +
(waypoints_np[i, 1] - waypoints_np[i - 1, 1]) ** 2))
# last distance is 0 because it is the distance from the last waypoint to the last waypoint
wp_distance.append(0)
# Linearly interpolate between waypoints and store in a list
wp_interp = [] # interpolated values
# (rows = waypoints, columns = [x, y, v])
wp_interp_hash = []
# hash table which indexes waypoints_np to the index of the waypoint in wp_interp
interp_counter = 0 # counter for current interpolated point index
reached_the_end = False
for i in range(waypoints_np.shape[0] - 1):
# Add original waypoint to interpolated waypoints list (and append
# it to the hash table)
wp_interp.append(list(waypoints_np[i]))
wp_interp_hash.append(interp_counter)
interp_counter += 1
# Interpolate to the next waypoint. First compute the number of
# points to interpolate based on the desired resolution and
# incrementally add interpolated points until the next waypoint
# is about to be reached.
num_pts_to_interp = int(np.floor(wp_distance[i] / \
float(INTERP_DISTANCE_RES)) - 1)
wp_vector = waypoints_np[i + 1] - waypoints_np[i]
wp_uvector = wp_vector / np.linalg.norm(wp_vector)
for j in range(num_pts_to_interp):
next_wp_vector = INTERP_DISTANCE_RES * float(j + 1) * wp_uvector
wp_interp.append(list(waypoints_np[i] + next_wp_vector))
interp_counter += 1
# add last waypoint at the end
wp_interp.append(list(waypoints_np[-1]))
wp_interp_hash.append(interp_counter)
interp_counter += 1
# ==================================
# Controller 2D Class and vehicle model declaration
# ==================================
controller = Controller2D(waypoints)
if non_linear_model:
state = NonLinearBicycleModel(x=-180.3353216786993, y=79.53986286885691, yaw=np.radians(20.0))
else:
state = LinearBicycleModel(x=-180.3353216786993, y=79.53986286885691, yaw=np.radians(20.0))
start_x, start_y, start_yaw = state.x, state.y, state.yaw
state.update(throttle=0, delta=0)
x_history = [start_x]
y_history = [start_y]
yaw_history = [start_yaw]
speed_history = [0]
# Index of waypoint that is currently closest to the car, assumed to be the first index
closest_index = 0
steps = 0
# reference track and speed for plotting usage
x_ref = list(waypoints_np[:, 0])
y_ref = list(waypoints_np[:, 1])
speed_ref = []
# for debug
speed_error = []
throttle_history = []
while True:
steps = steps + 1
# Update position, timestamp
current_x, current_y, current_yaw = state.x, state.y, state.yaw
if non_linear_model:
current_speed = state.vx
else:
current_speed = state.v
# for debug use
# if steps % 1000 == 0:
# print(
# "step {s}, cx {cx}, cy {cy}, cv {cv}".format(s=steps, cx=current_x, cy=current_y, cv=current_speed))
# Store history
x_history.append(current_x)
y_history.append(current_y)
yaw_history.append(current_yaw)
speed_history.append(current_speed)
# Controller update
closest_distance = np.linalg.norm(np.array([
waypoints_np[closest_index, 0] - current_x,
waypoints_np[closest_index, 1] - current_y]))
new_distance = closest_distance
new_index = closest_index
while new_distance <= closest_distance:
closest_distance = new_distance
closest_index = new_index
new_index += 1
if new_index >= waypoints_np.shape[0]: # End of path
break
new_distance = np.linalg.norm(np.array([
waypoints_np[new_index, 0] - current_x,
waypoints_np[new_index, 1] - current_y]))
new_distance = closest_distance
new_index = closest_index
while new_distance <= closest_distance:
closest_distance = new_distance
closest_index = new_index
new_index -= 1
# Beginning of path
if new_index < 0:
break
new_distance = np.linalg.norm(np.array([
waypoints_np[new_index, 0] - current_x,
waypoints_np[new_index, 1] - current_y]))
# Once the closest index is found, return the path that has 1
# waypoint behind and X waypoints ahead, where X is the index
# that has a lookahead distance specified by INTERP_LOOKAHEAD_DISTANCE
waypoint_subset_first_index = closest_index - 1
if waypoint_subset_first_index < 0:
waypoint_subset_first_index = 0
waypoint_subset_last_index = closest_index
total_distance_ahead = 0
while total_distance_ahead < INTERP_LOOKAHEAD_DISTANCE:
total_distance_ahead += wp_distance[waypoint_subset_last_index]
waypoint_subset_last_index += 1
if waypoint_subset_last_index >= waypoints_np.shape[0]:
waypoint_subset_last_index = waypoints_np.shape[0] - 1
break
# Use the first and last waypoint subset indices into the hash
# table to obtain the first and last indicies for the interpolated
# list. Update the interpolated waypoints to the controller
# for the next controller update.
new_waypoints = \
wp_interp[wp_interp_hash[waypoint_subset_first_index]: \
wp_interp_hash[waypoint_subset_last_index] + 1]
# update waypoints
controller.update_waypoints(new_waypoints)
# Update the other controller values and controls
controller.update_values(current_x, current_y, current_yaw,
current_speed)
controller.update_controls()
speed_ref.append(controller._desired_speed)
# for debug use, to better visualise, we multiply throttle with 5
throttle_history.append(5 * (controller.throttle))
speed_error.append(controller._e)
# Output controller command to the vehicle and update the states
state.update(throttle=controller.throttle, delta=controller.steer)
# Find if reached the end of waypoint. If the car is within DIST_THRESHOLD_TO_LAST_WAYPOINT to the last waypoint,
# then simulation will be terminated.
dist_to_last_waypoint = np.linalg.norm(np.array([
waypoints[-1][0] - current_x,
waypoints[-1][1] - current_y]))
if dist_to_last_waypoint < DIST_THRESHOLD_TO_LAST_WAYPOINT or current_x > 320:
reached_the_end = True
print("Reached the end of path. Writing to controller_output...")
if reached_the_end:
# save the plot at the end of the simulation
plot_fn(x_history, y_history, x_ref, y_ref, speed_history, speed_ref, speed_error, throttle_history)
# plot_debug(speed_error) # for debug
break
if show_animation:
plt.cla()
plot_vehicle(x_history, y_history, x_ref, y_ref, steps)
def plot_vehicle(x_traj, y_traj, x_ref, y_ref, frame):
plt.plot(x_traj, y_traj, 'b--')
plt.plot(x_ref, y_ref, 'r-')
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.xlim(-250, 400)
plt.ylim(-800, 100)
plt.title('frame={}'.format(frame))
plt.pause(0.01)
def plot_fn(x_history, y_history, x_ref, y_ref, speed_history, speed_ref, speed_error, throttle):
os.makedirs("results", exist_ok=True)
plt.figure(1)
plt.plot(x_history, y_history, 'b-', label='real')
plt.plot(x_ref, y_ref, 'r--', label='ref')
plt.title('Vehicle trajectory')
plt.xlim(-250, 400)
plt.ylim(-800, 100)
plt.legend()
plt.xlabel('x (m)')
plt.ylabel('y (m)')
plt.savefig('results/' + trajectory_path)
plt.figure(2)
plt.plot(speed_history, 'b-', label='real')
plt.plot(speed_ref, 'r--', label='ref')
# plt.plot(speed_error, 'k', label='error') # v_desired - v
# for visualization, we multiply 2
plt.plot(throttle, 'g', label='throttle')
plt.title('Vehicle speed')
plt.legend()
plt.grid(True)
plt.xlabel('waypoint # ')
plt.ylabel('speed (m/s)')
plt.savefig('results/' + speed_path)
def plot_debug(speed_error):
# plot for debug use
plt.figure(3)
plt.plot(speed_error)
plt.title('Vehicle speed tracking error')
plt.savefig('results/tracking_error')
if __name__ == '__main__':
main()