-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
102 lines (87 loc) · 4.39 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"></head><body><h2>Devlin Mallory</h2>
<img src="./LOG.jpg" border="0" height="400" align="RIGHT">
<table>
<tbody>
<tr>
<td><strong>email:</strong></td>
<td><a href="mailto:malloryd@math.utah.edu">
malloryd@math.utah.edu</a></td></tr>
<tr>
<td><strong>office:</strong></td>
<td>JWB 125</td>
</tr>
</tbody>
</table>
<p>
I am currently a postdoc at the Basque Center For Applied Mathematics, in the <a href="https://www.bcamath.org/en/research/areas/mp/stag">Singularity Theory and Algebraic Geometry group</a>. I study algebraic geometry and commutative algebra.
Recently, I've been thinking about positivity properties of tangent bundles of Fano manifolds in relation to differential properties of their section rings, and connections to positive characteristic phenomena such as finite F-representation type. I'm also interested in applications of arc spaces to the study of singularities.
</p>
<p>Previous to this, I was a postdoc at the University of Utah, and before that
I was a graduate student at the University of Michigan.
My adviser was <a href="http://www.math.lsa.umich.edu/~mmustata/">Mircea Mustaţă</a>. </p>
<p>
You can find my CV <a href="https://devlin-mallory.github.io/main.pdf">here</a>.
</p>
<p></p>
<h3>Papers</h3>
<li> The tilting property for F_*^e\O_X on Fano surfaces and threefolds.
<a href="https://arxiv.org/abs/2405.14070">arXiv:2405:14070</a>
</li>
<li>
Homogeneous coordinate rings as direct summands of regular rings.
<a href="https://doi.org/10.1215/00192082-11081236"> Illinois Journal of Mathematics, 68(1), 2024</a>.
<a href="https://arxiv.org/abs/2206.03621">arXiv:2206:03621</a>
</li>
<li>
Finite F-representation type for homogeneous coordinate rings of non-Fano varieties.
<a href="https://doi.org/10.46298/epiga.2023.10868"> Épijournal de Géometrie Algébrique, Volume 7, 2023</a>.
<a href="https://arxiv.org/abs/2207.08966">arXiv:2207:08966</a>
</li>
<li style=" padding-left: 1.28571429em;
text-indent: -1.28571429em;">
An explicit self-duality (with Nikolas Kuhn, Vaidehee Thatte, and Kirsten Wickelgren).
In <i>Stacks Project Expository Collection</i>, LMS Lecture Note Series, number 480, Cambridge University Press, 2023.
<a href="https://arxiv.org/abs/2111.06848">arXiv:2111:06848</a>
</li>
<li>
Bigness of the tangent bundle of del Pezzo surfaces and D-simplicity.
<a href="https://doi.org/10.2140/ant.2021.15.2019"> Algebra & Number Theory 15(8), 2021</a>.
<a href="https://arxiv.org/abs/2002.11010">arXiv:2002.11010</a></li>
<li>
Minimal log discrepancies of determinantal varieties via jet schemes.
<a href="https://doi.org/10.1016/j.jpaa.2020.106497">Journal of Pure and Applied Algebra 225(2), 2021</a>.
<a href="https://arxiv.org/abs/1905.05379">arXiv:1905.05379</a>
</li>
<li>
Triviality of arc closures and the local isomorphism problem,
<a href="https://doi.org/10.1016/j.jalgebra.2019.09.028">Journal of Algebra
544(47), 2020</a>.
<a href="https://arxiv.org/abs/1811.12577">arXiv:1811.12577</a></li>
<!--<h3>Expository writing</h3>
<li><a href="main.pdf">Motivic integration (Summer 2019; under construction!)</a></li>
<li><a href="HilbertScheme.pdf">Hilbert schemes of points (Summer 2018)</a></li>
<li><a href="surfaces.pdf">Algebraic surfaces (Spring 2017)</a></li>
-->
<h3>Previous teaching</h3>
<li> Winter 2024: Math 4400 (introduction to number theory) </li>
<li> Fall 2023: Math 5510 (introduction to general topology) </li>
<li> August 2023: Co-organizer, new instructor training. </li>
<li> Winter 2023: Math 3160 (complex analysis) </li>
<li> Fall 2022: Math 1220 (calculus II) </li>
<li> Fall 2021: Math 1080 (precalculus) </li>
<!-- <h3>Summer 2021 minicourses</h3>
<p>Each summer, the math department has a series of minicourses taught by graduate students. I'm organizing the 2021 summer minicourses; for more information, see the <a href="minicourses2021.html">webpage</a>.
</p>
<p>
I also organized the
<a href="minicourses2020.html">2020</a>,
<a href="minicourses2019.html">2019</a>,
and
<a href="minicourses2018.html">2018</a>
minicourses.
</p>
<h3>Singularities reading group</h3>
<p>
Over the 2018–2019 academic year, I organized a seminar on singularities in algebraic geometry and commutative algebra. Notes from the Fall semester can be found <a href="singularities1.pdf">here</a>, and from the Winter semester
<a href="singularities2.pdf">here</a>; any mistakes are my own.
-->