Conducted an in-depth analysis of an online restaurant chain, comprising 21 stores all over Paris. The analysis will encompass 3,924,748 orders spanning from 2015 to 2020. Four primary datasets will be utilized: Order Data, Orderline, Payment Data, and ID Store.
- Project Overview
- Power BI dashboard
- Tools Used
- Data cleaning
- Exploratory data analysis
- Hypothesis Testing
- Findings
- Recommendations
The aim of this analysis is to extract valuable insights and trends regarding customer behavior, sales performance, and store operations over the specified timeframe.
![Screenshot 2025-01-06 at 23 28 14](https://private-user-images.githubusercontent.com/147874875/400573027-345832c6-4476-4f7d-881e-980f06b6c7fd.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMDI3LTM0NTgzMmM2LTQ0NzYtNGY3ZC04ODFlLTk4MGYwNmI2YzdmZC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT03NWRiOGVkZWNiNWU1ODhiYWJlYWY0Nzc1NGQ2ZDBlMzIyZWM1OGExMGQ1ZDQ4MDc2MGVkMjc2MGM1OTVjZjFhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.VnI_3xQFqxhlFcxytCnQVSWA46IDLDe_ZHhkx9tPGr4)
![Screenshot 2025-01-06 at 23 29 24](https://private-user-images.githubusercontent.com/147874875/400573068-75788bd7-543b-4a29-98e2-f09db4d4e746.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMDY4LTc1Nzg4YmQ3LTU0M2ItNGEyOS05OGUyLWYwOWRiNGQ0ZTc0Ni5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT01ZmM1MmI2ZDk5NWRhYzc4ODhkMGJmZWFmNjZiNGVkNTQ2OWQ4N2MzNjUyNDEzYjFkODM1Mjg4ODZkZjRkNjVhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.eWyT0hJWOC3VlHgeW-J4CY4pUBGzjRaC-tgaZcthlq8)
![Screenshot 2025-01-06 at 23 29 50](https://private-user-images.githubusercontent.com/147874875/400573151-97a8c764-1eeb-4c7e-9fc6-ecb3bd0fac37.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMTUxLTk3YThjNzY0LTFlZWItNGM3ZS05ZmM2LWVjYjNiZDBmYWMzNy5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lNjRkMjc5M2M3MTY1OTcyNzc0NjBjZTg4MzQ3ZDM1ZWEwM2FjMGQ3ZTRlYTQ3NmQ2MzliM2Q3OGQxN2I2NjJiJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.PUMix_pvkGBbFWrllirRHdtnylC-AoHrOyHeB3esZ2Q)
![Screenshot 2025-01-06 at 23 30 21](https://private-user-images.githubusercontent.com/147874875/400573173-2b019466-7350-4306-8664-0a16cbfa5933.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMTczLTJiMDE5NDY2LTczNTAtNDMwNi04NjY0LTBhMTZjYmZhNTkzMy5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT00ODg4MmU0YWFiNjYxZWNkYmEyMzE4ZmVkZDY0MGJjMDIyZDNmZmZmZWNmNmQ5Y2E0MDhjMTlkY2ExYzMwZjVkJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.MpmwwyZ9om5Bp1fWffgD_ZFOTuAZ5-xJzjNno9JKqEE)
![Screenshot 2025-01-06 at 23 31 05](https://private-user-images.githubusercontent.com/147874875/400573213-5de341a7-636f-4ce5-88c8-b35a9677e935.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMjEzLTVkZTM0MWE3LTYzNmYtNGNlNS04OGM4LWIzNWE5Njc3ZTkzNS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT0zY2YxZjk2ZmM1NjcwZjc1MjFiY2M1Mjk1OWZjMDViODZlMjg0ZjlhZTkxYzAyYjA4NGEwNDZkNTFkOTNmYTMzJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.eTvkhzVcAvB9uzYhy25-Sws6Emxk8xdLpgC3Qu6tUXA)
![Screenshot 2025-01-06 at 23 31 29](https://private-user-images.githubusercontent.com/147874875/400573246-5186d6c6-8b39-4e00-911d-6be9a4019f9a.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzOTcwOTksIm5iZiI6MTczOTM5Njc5OSwicGF0aCI6Ii8xNDc4NzQ4NzUvNDAwNTczMjQ2LTUxODZkNmM2LThiMzktNGUwMC05MTFkLTZiZTlhNDAxOWY5YS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxMlQyMTQ2MzlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1jZWQxYTQxNmIxMjQ0ZGRlNDU5MzExMDdmMjlmMzU1MGM5ODYyNjE0NTgwYjJkYjRhYjdlNzY4OTk1Yzk2ZjgwJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.acDcWB6n6JgtwYpGXd4kDT0jYjiknsP-13KwU8J_P0g)
- Google BigQuery, PostgreSQL
- SQL: For data cleaning and transformation
- Python, Panda: For data cleaning, inspection, and analysis
- Power BI: Visualization, DAX, Measures
To clean the data I performed the following tasks:
- Reading the SCHEMA, data dictionary and understanding the Details of the data
- Handling null values and understanding the columns
- Handling missing values and duplicates
- Data cleaning, formatting, and also dates and numbers adjustment
- What is the overall sales trend?
- Which products are top sellers?
- What are the peak sales periods?
- Which products are sold in high quantities?
- Which seller sold the most?
- Which products received low reviews?
- Which products received high reviews?
- Which products generated the highest revenue?
- What is the seasonality of orders?
- The number of sales is higher on weekends than during the weekday
- More number of tables in the store means bigger turnover
- The bigger the restaurant (number of tables) better the time efficiency
- Average price is higher in stores closest to the city center
- More number of orders means higher turnover
- Store with more time efficiency sell more
- When higher the average price in the store, the bigger the turnover
The analysis results are summarized as follows:
- The company sales have been steadily growing during the years 2017 and 2018, with a remarkable 230% growth rate
- During 2018 and 2019, it showed a 33% growth rate, but during 2020, the sales showed a 57% reduction
- In terms of revenue and sales, menus are the best-performing category
- Store 4151 generated €2.32 million in revenue, while other stores like 5281 and 1513 generated around €1 million in revenue each
- Orders closed on weekdays generated a higher average revenue than those closed on weekends. The average order value is approximately €56.13 for weekdays and €36.46 for weekends
- When it comes to payment method, customers tend to spend more when paying with a card compared to cash: With a card, the average payment amount is €68.92, but with cash, the average payment amount is €14.57
Based on the analysis we recommended the following actions:
- Always ensure that the top-selling products are in stock, especially the paired items
- Given that certain stores, such as 4151, are generating a significant amount of revenue, it may be necessary to study this store to understand the factors contributing to its performance
- It may be necessary to identify the top sellers or recognize their contributions
- Some stores sold fewer items. It may be necessary to determine the reasons and review the process