-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
401 lines (367 loc) · 16.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import copy
import math
import pickle
import logging
import numpy as np
import networkx as nx
import scipy.sparse as sp
from copy import deepcopy
from datetime import datetime
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, average_precision_score
from dgl.data.citation_graph import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from ogb.linkproppred import Evaluator, PygLinkPropPredDataset
from ogb.linkproppred import DglLinkPropPredDataset
def eval_ep_batched(logits, labels, n_pos):
# roc-auc and ap
roc_auc = roc_auc_score(labels, logits)
ap_score = average_precision_score(labels, logits)
results = {'auc': roc_auc,
'ap': ap_score}
# hits@K
evaluator = Evaluator(name='ogbl-ddi')
for K in [20, 50, 100]:
evaluator.K = K
hits = evaluator.eval({
'y_pred_pos': logits[:n_pos],
'y_pred_neg': logits[n_pos:],
})[f'hits@{K}']
results[f'hits@{K}'] = hits
return results
def eval_ep(A_pred, edges, edges_false):
preds = A_pred[edges.T]
preds_neg = A_pred[edges_false.T]
logits = np.hstack([preds, preds_neg])
labels = np.hstack([np.ones(preds.size(0)), np.zeros(preds_neg.size(0))])
# roc-auc and ap
roc_auc = roc_auc_score(labels, logits)
ap_score = average_precision_score(labels, logits)
results = {'auc': roc_auc,
'ap': ap_score}
# hits@K
evaluator = Evaluator(name='ogbl-ddi')
for K in [20, 50, 100]:
evaluator.K = K
hits = evaluator.eval({
'y_pred_pos': preds,
'y_pred_neg': preds_neg,
})[f'hits@{K}']
results[f'hits@{K}'] = hits
return results
def normalize_sp(adj_matrix):
# normalize adj by D^{-1/2}AD^{-1/2} for scipy sparse matrix input
degrees = np.array(adj_matrix.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(degrees, -0.5).flatten())
degree_mat_inv_sqrt = np.nan_to_num(degree_mat_inv_sqrt)
adj_norm = degree_mat_inv_sqrt @ adj_matrix @ degree_mat_inv_sqrt
return adj_norm
def load_data(args, logger):
path = args.datapath
ds = args.dataset
if ds.startswith('ogbl'):
dataset = DglLinkPropPredDataset(name=ds, root=args.datapath)
graph = dataset[0]
adj_train = graph.adjacency_matrix(scipy_fmt='csr')
g = nx.from_scipy_sparse_matrix(adj_train)
print('density',nx.density(g))
print('edges:', len(g.edges()) )
print('nodes:', len(g.nodes()) )
adj_train.setdiag(1)
if 'feat' in graph.ndata:
features = graph.ndata['feat']
dim_feat = features.shape[-1]
else:
# construct one-hot degree features
degrees = torch.LongTensor(adj_train.sum(0) - 1)
indices = torch.cat((torch.arange(adj_train.shape[0]).unsqueeze(0), degrees), dim=0)
features = torch.sparse.FloatTensor(indices, torch.ones(adj_train.shape[0])).to_dense().numpy()
features = torch.Tensor(features)
# using adj_train as adj_label as training loss is only calculated with train_pairs (excluding val/test edges and no_edges)
adj_label = copy.deepcopy(adj_train)
# load given train/val/test edges and no_edges
split_edge = dataset.get_edge_split()
val_split, test_split = split_edge["valid"], split_edge["test"]
val_edges, val_edges_false = val_split['edge'].numpy(), val_split['edge_neg'].numpy()
test_edges, test_edges_false = test_split['edge'].numpy(), test_split['edge_neg'].numpy()
# get training node pairs (edges and no-edges)
if os.path.exists(f'{path}{ds}_trainpairs.pkl'):
train_pairs = pickle.load(open(f'{path}{ds}_trainpairs.pkl', 'rb'))
else:
train_mask = np.ones(adj_train.shape)
for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]:
train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0
train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0
train_pairs = np.asarray(sp.triu(train_mask, 1).nonzero()).T
pickle.dump(train_pairs, open(f'{path}{ds}_trainpairs.pkl', 'wb'))
else:
if args.dataset in ['cora', 'citeseer', 'pubmed']:
# adj matrix (with self-loop): sp.csr_matrix
adj_label = pickle.load(open(f'{path}{ds}_adj.pkl', 'rb'))
# node features: sp.lil_matrix
features = pickle.load(open(f'{path}{ds}_feat.pkl', 'rb'))
if isinstance(features, sp.lil.lil_matrix):
features= features.toarray()
features = torch.FloatTensor(features)
dim_feat = features.shape[-1]
elif args.dataset == 'facebook':
filename = f'data/{args.dataset}.txt'
g = nx.read_edgelist(filename,create_using=nx.Graph(), nodetype = int, data=(("weight", float),))
adj_label = nx.adjacency_matrix(g, nodelist = sorted(g.nodes()))
adj_label = (adj_label > 0).astype('int') # to binary
#load tvt_edges
tvt_edges_file = f'{args.datapath}{args.dataset}_tvtEdges_val{args.val_frac}test{args.test_frac}.pkl'
adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj_label, args.val_frac, args.test_frac, tvt_edges_file, logger)
if args.dataset == 'facebook':
degrees = np.array(adj_train.sum(axis=1)).flatten().astype('int')
dim_feat = degrees.max()
one_hot_feat = np.eye(dim_feat)[degrees - 1]
one_hot_feat = one_hot_feat.reshape((adj_train.shape[0], dim_feat))
features = torch.FloatTensor(one_hot_feat)
dim_feat = features.shape[-1]
# print('dim feature, ', dim_feat)
return adj_label, features, dim_feat, adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false
def mask_test_edges(adj_orig, val_frac, test_frac, filename, logger):
# NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.
if os.path.exists(filename):
adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false = pickle.load(open(filename, 'rb'))
logger.info(f'loaded cached val and test edges with fracs of {val_frac} and {test_frac}')
return adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false
# Remove diagonal elements
adj = deepcopy(adj_orig)
# set diag as all zero
adj.setdiag(0)
adj.eliminate_zeros()
# Check that diag is zero:
assert np.diag(adj.todense()).sum() == 0
adj_triu = sp.triu(adj, 1)
# adj_tuple = sparse_to_tuple(adj_triu)
# edges = adj_tuple[0]
edges = sparse_to_tuple(adj_triu)[0]
edges_all = sparse_to_tuple(adj)[0]
num_test = int(np.floor(edges.shape[0] * test_frac))
num_val = int(np.floor(edges.shape[0] * val_frac))
all_edge_idx = list(range(edges.shape[0]))
np.random.shuffle(all_edge_idx)
val_edge_idx = all_edge_idx[:num_val]
test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
test_edges = edges[test_edge_idx]
val_edges = edges[val_edge_idx]
train_edges = np.delete(edges, np.hstack([test_edge_idx, val_edge_idx]), axis=0)
noedge_mask = np.ones(adj.shape) - adj_orig
noedges = np.asarray(sp.triu(noedge_mask, 1).nonzero()).T
all_edge_idx = list(range(noedges.shape[0]))
np.random.shuffle(all_edge_idx)
val_edge_idx = all_edge_idx[:num_val]
test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
test_edges_false = noedges[test_edge_idx]
val_edges_false = noedges[val_edge_idx]
# following lines for getting the no-edges are substituted with above lines
"""
test_edges_false = []
while len(test_edges_false) < len(test_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], edges_all):
continue
if test_edges_false:
if ismember([idx_j, idx_i], np.array(test_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(test_edges_false)):
continue
test_edges_false.append([idx_i, idx_j])
test_edges_false = np.asarray(test_edges_false).astype("int32")
val_edges_false = []
while len(val_edges_false) < len(val_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], train_edges):
continue
if ismember([idx_j, idx_i], train_edges):
continue
if ismember([idx_i, idx_j], val_edges):
continue
if ismember([idx_j, idx_i], val_edges):
continue
if val_edges_false:
if ismember([idx_j, idx_i], np.array(val_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(val_edges_false)):
continue
val_edges_false.append([idx_i, idx_j])
val_edges_false = np.asarray(val_edges_false).astype("int32")
"""
def ismember(a, b, tol=5):
rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
return np.any(rows_close)
assert ~ismember(test_edges_false, edges_all)
assert ~ismember(val_edges_false, edges_all)
assert ~ismember(val_edges, train_edges)
assert ~ismember(test_edges, train_edges)
assert ~ismember(val_edges, test_edges)
data = np.ones(train_edges.shape[0])
# Re-build adj matrix
adj_train = sp.csr_matrix((data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape)
adj_train = adj_train + adj_train.T
adj_train.setdiag(1)
# get training node pairs (edges and no-edges)
train_mask = np.ones(adj_train.shape)
for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]:
for e in edges_tmp:
assert e[0] < e[1]
train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0
train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0
train_pairs = np.asarray(sp.triu(train_mask, 1).nonzero()).T
# cache files for future use
pickle.dump((adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false), open(filename, 'wb'))
logger.info(f'masked and cached val and test edges with fracs of {val_frac} and {test_frac}')
# NOTE: all these edge lists only contain single direction of edge!
return adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false
def cache_dataset(dataset):
# download and cache Cora/CiteSeer/PubMed datasets
def download_dataset(dataset):
if dataset == 'cora':
return CoraGraphDataset(verbose=False)
elif dataset == 'citeseer':
return CiteseerGraphDataset()
elif dataset == 'pubmed':
return PubmedGraphDataset()
else:
raise TypeError('unsupported dataset.')
ds = download_dataset(dataset)
adj = nx.to_scipy_sparse_matrix(ds._graph)
feats = ds._g.ndata['feat']
labels = ds._g.ndata['label']
idx_train = np.argwhere(ds._g.ndata['train_mask'] == 1).reshape(-1)
idx_val = np.argwhere(ds._g.ndata['val_mask'] == 1).reshape(-1)
idx_test = np.argwhere(ds._g.ndata['test_mask'] == 1).reshape(-1)
adj.setdiag(1)
feats = sp.lil_matrix(feats.numpy())
pickle.dump(adj, open(f'data/{dataset}_adj.pkl', 'wb'))
pickle.dump(feats, open(f'data/{dataset}_feat.pkl', 'wb'))
pickle.dump(labels, open(f'data/{dataset}_label.pkl', 'wb'))
pickle.dump((idx_train, idx_val, idx_test), open(f'data/{dataset}_tvt-idx.pkl', 'wb'))
print(adj.shape, (adj.nnz-adj.shape[0])/2, feats.shape, len(np.unique(labels)), len(idx_train), len(idx_val), len(idx_test))
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
class MultipleOptimizer():
""" a class that wraps multiple optimizers """
def __init__(self, lr_scheduler, *op):
self.optimizers = op
self.steps = 0
self.reset_count = 0
self.next_start_step = 10
self.multi_factor = 2
self.total_epoch = 0
if lr_scheduler == 'sgdr':
self.update_lr = self.update_lr_SGDR
elif lr_scheduler == 'cos':
self.update_lr = self.update_lr_cosine
elif lr_scheduler == 'zigzag':
self.update_lr = self.update_lr_zigzag
elif lr_scheduler == 'none':
self.update_lr = self.no_update
def zero_grad(self):
for op in self.optimizers:
op.zero_grad()
def step(self):
for op in self.optimizers:
op.step()
def no_update(self, base_lr):
return base_lr
def update_lr_SGDR(self, base_lr):
end_lr = 1e-3 # 0.001
total_T = self.total_epoch + 1
if total_T >= self.next_start_step:
self.steps = 0
self.next_start_step *= self.multi_factor
cur_T = self.steps + 1
lr = end_lr + 1/2 * (base_lr - end_lr) * (1.0 + math.cos(math.pi*cur_T/total_T))
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
self.steps += 1
self.total_epoch += 1
return lr
def update_lr_zigzag(self, base_lr):
warmup_steps = 50
annealing_steps = 20
end_lr = 1e-4
if self.steps < warmup_steps:
lr = base_lr * (self.steps+1) / warmup_steps
elif self.steps < warmup_steps+annealing_steps:
step = self.steps - warmup_steps
q = (annealing_steps - step) / annealing_steps
lr = base_lr * q + end_lr * (1 - q)
else:
self.steps = self.steps - warmup_steps - annealing_steps
lr = end_lr
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
self.steps += 1
return lr
def update_lr_cosine(self, base_lr):
""" update the learning rate of all params according to warmup and cosine annealing """
# 400, 1e-3
warmup_steps = 10
annealing_steps = 500
end_lr = 1e-3
if self.steps < warmup_steps:
lr = base_lr * (self.steps+1) / warmup_steps
elif self.steps < warmup_steps+annealing_steps:
step = self.steps - warmup_steps
q = 0.5 * (1 + math.cos(math.pi * step / annealing_steps))
lr = base_lr * q + end_lr * (1 - q)
else:
# lr = base_lr * 0.001
self.steps = self.steps - warmup_steps - annealing_steps
lr = end_lr
for optimizer in self.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
self.steps += 1
return lr
def get_logger(name):
""" create a nice logger """
logger = logging.getLogger(name)
# clear handlers if they were created in other runs
if (logger.hasHandlers()):
logger.handlers.clear()
logger.setLevel(logging.DEBUG)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(message)s')
# create console handler add add to logger
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
# create file handler add add to logger when name is not None
if name is not None:
fh = logging.FileHandler(f'{name}.log')
fh.setFormatter(formatter)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
return logger
def scipysp_to_pytorchsp(sp_mx):
""" converts scipy sparse matrix to pytorch sparse matrix """
if not sp.isspmatrix_coo(sp_mx):
sp_mx = sp_mx.tocoo()
coords = np.vstack((sp_mx.row, sp_mx.col)).transpose()
values = sp_mx.data
shape = sp_mx.shape
pyt_sp_mx = torch.sparse.FloatTensor(torch.LongTensor(coords.T),
torch.FloatTensor(values),
torch.Size(shape))
return pyt_sp_mx