-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdsc.py
126 lines (83 loc) · 4.21 KB
/
dsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torchvision import models
import torch.nn as nn
# from resnet import resnet34
# import resnet
from torch.nn import functional as F
class ConvBnRelu(nn.Module):
def __init__(self, in_planes, out_planes, ksize, stride, pad, dilation=1,
groups=1, has_bn=True, norm_layer=nn.BatchNorm2d,
has_relu=True, inplace=True, has_bias=False):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=ksize,
stride=stride, padding=pad,
dilation=dilation, groups=groups, bias=has_bias)
self.has_bn = has_bn
if self.has_bn:
self.bn = nn.BatchNorm2d(out_planes)
self.has_relu = has_relu
if self.has_relu:
self.relu = nn.ReLU(inplace=inplace)
def forward(self, x):
x = self.conv(x)
if self.has_bn:
x = self.bn(x)
if self.has_relu:
x = self.relu(x)
return x
class DSC(nn.Module):
def __init__(self, in_channels):
super(DSC, self).__init__()
self.conv3x3=nn.Conv2d(in_channels=in_channels, out_channels=in_channels,dilation=1,kernel_size=3, padding=1)
self.bn=nn.ModuleList([nn.BatchNorm2d(in_channels),nn.BatchNorm2d(in_channels),nn.BatchNorm2d(in_channels)])
self.conv1x1=nn.ModuleList([nn.Conv2d(in_channels=2*in_channels, out_channels=in_channels,dilation=1,kernel_size=1, padding=0),
nn.Conv2d(in_channels=2*in_channels, out_channels=in_channels,dilation=1,kernel_size=1, padding=0)])
self.conv3x3_1=nn.ModuleList([nn.Conv2d(in_channels=in_channels, out_channels=in_channels//2,dilation=1,kernel_size=3, padding=1),
nn.Conv2d(in_channels=in_channels, out_channels=in_channels//2,dilation=1,kernel_size=3, padding=1)])
self.conv3x3_2=nn.ModuleList([nn.Conv2d(in_channels=in_channels//2, out_channels=2,dilation=1,kernel_size=3, padding=1),
nn.Conv2d(in_channels=in_channels//2, out_channels=2,dilation=1,kernel_size=3, padding=1)])
self.conv_last=ConvBnRelu(in_planes=in_channels,out_planes=in_channels,ksize=1,stride=1,pad=0,dilation=1)
self.norm = nn.Sigmoid()
self.conv1= nn.Conv2d(in_channels*2, 1, kernel_size=1, padding=0)
self.dconv1=nn.Conv2d(in_channels*2, in_channels, kernel_size=1, padding=0)
self.gamma = nn.Parameter(torch.zeros(1))
self.relu=nn.ReLU(inplace=True)
def forward(self, x):
x_size= x.size()
branches_1=self.conv3x3(x)
branches_1=self.bn[0](branches_1)
branches_2=F.conv2d(x,self.conv3x3.weight,padding=2,dilation=2)#share weight
branches_2=self.bn[1](branches_2)
branches_3=F.conv2d(x,self.conv3x3.weight,padding=4,dilation=4)#share weight
branches_3=self.bn[2](branches_3)
feat=torch.cat([branches_1,branches_2],dim=1)
feat_g =feat
# print(feat_g.shape)
feat_g1 = self.relu(self.conv1(feat_g))
feat_g1 = self.norm(feat_g1)
out1 = feat_g * feat_g1
out1 = self.dconv1(out1)
# feat=feat_cat.detach()
feat=self.relu(self.conv1x1[0](feat))
feat=self.relu(self.conv3x3_1[0](feat))
att=self.conv3x3_2[0](feat)
att = F.softmax(att, dim=1)
att_1=att[:,0,:,:].unsqueeze(1)
att_2=att[:,1,:,:].unsqueeze(1)
fusion_1_2=att_1*branches_1+att_2*branches_2 +out1
feat1=torch.cat([fusion_1_2,branches_3],dim=1)
feat_g =feat1
feat_g1 = self.relu(self.conv1(feat_g))
feat_g1 = self.norm(feat_g1)
out2 = feat_g * feat_g1
out2 = self.dconv1(out2)
# feat=feat_cat.detach()
feat1=self.relu(self.conv1x1[0](feat1))
feat1=self.relu(self.conv3x3_1[0](feat1))
att1=self.conv3x3_2[0](feat1)
att1 = F.softmax(att1, dim=1)
att_1_2=att1[:,0,:,:].unsqueeze(1)
att_3=att1[:,1,:,:].unsqueeze(1)
ax=self.relu(self.gamma*(att_1_2*fusion_1_2+att_3*branches_3 +out2)+(1-self.gamma)*x)
ax=self.conv_last(ax)
return ax