Focusing on the machine learning aspects of our project CultureConnect, an app designed to help users understand their emotions and discover suitable cafe recommendations based on their mood.
- Collect mood-related text data from various sources.
- Gather cafe information tailored to different emotional states.
- Compile a comprehensive dataset of emotional expressions and cafe environments.
- Label the dataset with the following mood categories:
- Sadness
- Joy
- Love
- Anger
- Fear
- Surprise
Build three distinct models:
- Mood Detection Model: Utilize the Bidirectional LSTM with Embedding Neural Network architecture for emotion classification.
- Cafe Recommendation Model: Implement content-based filtering using TensorFlow and cosine similarity.
- Text Summarization: Fine-tune the architecture to generate mood-based insights.
-
Text Preprocessing:
- Text data is tokenized and padded for uniform input sequences.
- Employed one-hot encoding for mood labels.
-
Mood Detection Model:
-
Built using a sequential neural network architecture:
- Embedding Layer: Maps words to dense vector representations.
- Bidirectional LSTM: Captures both past and future dependencies in text.
- Global Max Pooling Layer: Aggregates sequence information.
- Dense Layers: Fully connected layers for classification.
-
Optimized using cross-entropy loss and Adam optimizer.
-
-
Cafe Recommendation System:
- Mood Detection Training Data: Labeled and weighted text data.
- Cafe Recommendation Database: Information on cafes, including names, locations, ratings, and emotional suitability.
Explore our model demonstrations:
Comprehensive analysis of model performance, including:
- Sanh, V., et al. (2020). DistilBERT, a distilled version of BERT: smaller, faster, cheaper, and lighter.
- Houlsby, N., et al. (2019). Parameter-Efficient Transfer Learning for NLP.
- Agrippina Fleta (2021). Analisis Pencahayaan Alami dan Buatan pada Ruang Kantor terhadap Kenyamanan Visual Pengguna. JURNAL PATRA Vol. 3 No. 1. Available Online
- Selfiyani Lestari, Bagus Takwin, Dianti Endang Kusumawardhani (2021). Pencahayaan Baik untuk Emosi yang Positif: Analisis Emosi Saat Malam Hari Berdasarkan Penilaian Terhadap Pencahayaan Lokasi. INQUIRY Jurnal Ilmiah Psikologi Vol. 12 No. 1, hlm 38-52.
- Rr. Puruwita Wardani (2018). Pengaruh Mood Konstruktif dan Tidak Konstruktif terhadap Pengambilan Keputusan dalam Audit. JURNAL ONLINE INSAN AKUNTAN Vol. 3 No. 1, Juni 2018.
- Peilu Wang, Yao Qian, Frank K. Soong (2015). A Unified Tagging Solution: Bidirectional LSTM Recurrent Neural Network with Word Embedding. arXiv. DOI:10.48550/arXiv.1511.00215.
- Shi, J., Ye, M., Chen, H. et al. (2023). Enhancing Efficiency and Capacity of Telehealth Services with Intelligent Triage: A Bidirectional LSTM Neural Network Model Employing Character Embedding. BMC Med Inform Decis Mak 23, 269. DOI:10.1186/s12911-023-02367-1.