-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels.py
508 lines (391 loc) · 20.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# Code adapted from https://github.com/comfyanonymous/ComfyUI/
import comfy.samplers
import comfy.sample
import comfy.sampler_helpers
import comfy.utils
from comfy.cli_args import args
from comfy_extras.nodes_model_advanced import ModelSamplingSD3, ModelSamplingFlux, ModelSamplingAuraFlow, ModelSamplingStableCascade
import torch
import folder_paths
import os
import json
import math
import comfy.model_management
from .flux.model import ReFlux
from .flux.layers import SingleStreamBlock as ReSingleStreamBlock, DoubleStreamBlock as ReDoubleStreamBlock
from comfy.ldm.flux.model import Flux
from comfy.ldm.flux.layers import SingleStreamBlock, DoubleStreamBlock
from .rk_guide_func import get_orthogonal, get_cosine_similarity
from .res4lyf import RESplain
class ReFluxPatcher:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"enable": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
CATEGORY = "model_patches"
FUNCTION = "main"
def main(self, model, enable=True):
m = model #.clone()
if enable:
m.model.diffusion_model.__class__ = ReFlux
m.model.diffusion_model.threshold_inv = False
for i, block in enumerate(m.model.diffusion_model.double_blocks):
block.__class__ = ReDoubleStreamBlock
block.idx = i
for i, block in enumerate(m.model.diffusion_model.single_blocks):
block.__class__ = ReSingleStreamBlock
block.idx = i
else:
m.model.diffusion_model.__class__ = Flux
for i, block in enumerate(m.model.diffusion_model.double_blocks):
block.__class__ = DoubleStreamBlock
block.idx = i
for i, block in enumerate(m.model.diffusion_model.single_blocks):
block.__class__ = SingleStreamBlock
block.idx = i
return (m,)
import types
class FluxOrthoCFGPatcher:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"enable": ("BOOLEAN", {"default": True}),
"ortho_T5": ("BOOLEAN", {"default": True}),
"ortho_clip_L": ("BOOLEAN", {"default": True}),
"zero_clip_L": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
CATEGORY = "model_patches"
FUNCTION = "main"
original_forward = Flux.forward
@staticmethod
def new_forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs):
for _ in range(500):
if self.ortho_T5 and get_cosine_similarity(context[0], context[1]) != 0:
context[0] = get_orthogonal(context[0], context[1])
if self.ortho_clip_L and get_cosine_similarity(y[0], y[1]) != 0:
y[0] = get_orthogonal(y[0].unsqueeze(0), y[1].unsqueeze(0)).squeeze(0)
RESplain("postcossim1: ", get_cosine_similarity(context[0], context[1]))
RESplain("postcossim2: ", get_cosine_similarity(y[0], y[1]))
if self.zero_clip_L:
y[0] = torch.zeros_like(y[0])
return FluxOrthoCFGPatcher.original_forward(self, x, timestep, context, y, guidance, control, transformer_options, **kwargs)
def main(self, model, enable=True, ortho_T5=True, ortho_clip_L=True, zero_clip_L=True):
m = model.clone()
if enable:
m.model.diffusion_model.ortho_T5 = ortho_T5
m.model.diffusion_model.ortho_clip_L = ortho_clip_L
m.model.diffusion_model.zero_clip_L = zero_clip_L
Flux.forward = types.MethodType(FluxOrthoCFGPatcher.new_forward, m.model.diffusion_model)
else:
Flux.forward = FluxOrthoCFGPatcher.original_forward
return (m,)
class FluxGuidanceDisable:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"disable": ("BOOLEAN", {"default": True}),
"zero_clip_L": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
CATEGORY = "model_patches"
FUNCTION = "main"
original_forward = Flux.forward
@staticmethod
def new_forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs):
y = torch.zeros_like(y)
return FluxGuidanceDisable.original_forward(self, x, timestep, context, y, guidance, control, transformer_options, **kwargs)
def main(self, model, disable=True, zero_clip_L=True):
m = model.clone()
if disable:
m.model.diffusion_model.params.guidance_embed = False
else:
m.model.diffusion_model.params.guidance_embed = True
#m.model.diffusion_model.zero_clip_L = zero_clip_L
if zero_clip_L:
Flux.forward = types.MethodType(FluxGuidanceDisable.new_forward, m.model.diffusion_model)
return (m,)
def time_snr_shift_exponential(alpha, t):
return math.exp(alpha) / (math.exp(alpha) + (1 / t - 1) ** 1.0)
def time_snr_shift_linear(alpha, t):
if alpha == 1.0:
return t
return alpha * t / (1 + (alpha - 1) * t)
class ModelSamplingAdvanced:
# this is used to set the "shift" using either exponential scaling (default for SD3.5M and Flux) or linear scaling (default for SD3.5L and SD3 2B beta)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"scaling": (["exponential", "linear"], {"default": 'exponential'}),
"shift": ("FLOAT", {"default": 3.0, "min": -100.0, "max": 100.0, "step":0.01, "round": False}),
#"base_shift": ("FLOAT", {"default": 3.0, "min": -100.0, "max": 100.0, "step":0.01, "round": False}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "main"
CATEGORY = "model_patches"
def sigma_exponential(self, timestep):
return time_snr_shift_exponential(self.timestep_shift, timestep / self.multiplier)
def sigma_linear(self, timestep):
return time_snr_shift_linear(self.timestep_shift, timestep / self.multiplier)
def main(self, model, scaling, shift):
m = model.clone()
self.timestep_shift = shift
self.multiplier = 1000
timesteps = 1000
sampling_base = None
if isinstance(m.model.model_config, comfy.supported_models.Flux) or isinstance(m.model.model_config, comfy.supported_models.FluxSchnell):
self.multiplier = 1
timesteps = 10000
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.AuraFlow):
self.multiplier = 1
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.HunyuanVideo):
self.multiplier = 1000
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.CosmosT2V) or isinstance(m.model.model_config, comfy.supported_models.CosmosI2V):
self.multiplier = 1
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingContinuousEDM
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.LTXV):
self.multiplier = 1000
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.SD3):
self.multiplier = 1000
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
if sampling_base is None:
raise ValueError("Model not supported by ModelSamplingAdvanced")
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
m.object_patches['model_sampling'] = m.model.model_sampling = ModelSamplingAdvanced(m.model.model_config)
m.model.model_sampling.__dict__['shift'] = self.timestep_shift
m.model.model_sampling.__dict__['multiplier'] = self.multiplier
s_range = torch.arange(1, timesteps + 1, 1).to(torch.float64)
if scaling == "exponential":
ts = self.sigma_exponential((s_range / timesteps) * self.multiplier)
elif scaling == "linear":
ts = self.sigma_linear((s_range / timesteps) * self.multiplier)
m.model.model_sampling.register_buffer('sigmas', ts)
m.object_patches['model_sampling'].sigmas = m.model.model_sampling.sigmas
return (m,)
class ModelSamplingAdvancedResolution:
# this is used to set the "shift" using either exponential scaling (default for SD3.5M and Flux) or linear scaling (default for SD3.5L and SD3 2B beta)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"scaling": (["exponential", "linear"], {"default": 'exponential'}),
"max_shift": ("FLOAT", {"default": 1.35, "min": -100.0, "max": 100.0, "step":0.01, "round": False}),
"base_shift": ("FLOAT", {"default": 0.85, "min": -100.0, "max": 100.0, "step":0.01, "round": False}),
"latent_image": ("LATENT",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "main"
CATEGORY = "model_shift"
def sigma_exponential(self, timestep):
return time_snr_shift_exponential(self.timestep_shift, timestep / self.multiplier)
def sigma_linear(self, timestep):
return time_snr_shift_linear(self.timestep_shift, timestep / self.multiplier)
def main(self, model, scaling, max_shift, base_shift, latent_image):
m = model.clone()
height, width = latent_image['samples'].shape[2:]
x1 = 256
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
shift = (width * height / (8 * 8 * 2 * 2)) * mm + b
self.timestep_shift = shift
self.multiplier = 1000
timesteps = 1000
if isinstance(m.model.model_config, comfy.supported_models.Flux) or isinstance(m.model.model_config, comfy.supported_models.FluxSchnell):
self.multiplier = 1
timesteps = 10000
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.AuraFlow):
self.multiplier = 1
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
elif isinstance(m.model.model_config, comfy.supported_models.SD3):
self.multiplier = 1000
timesteps = 1000
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
m.object_patches['model_sampling'] = m.model.model_sampling = ModelSamplingAdvanced(m.model.model_config)
m.model.model_sampling.__dict__['shift'] = self.timestep_shift
m.model.model_sampling.__dict__['multiplier'] = self.multiplier
s_range = torch.arange(1, timesteps + 1, 1).to(torch.float64)
if scaling == "exponential":
ts = self.sigma_exponential((s_range / timesteps) * self.multiplier)
elif scaling == "linear":
ts = self.sigma_linear((s_range / timesteps) * self.multiplier)
m.model.model_sampling.register_buffer('sigmas', ts)
m.object_patches['model_sampling'].sigmas = m.model.model_sampling.sigmas
return (m,)
class UNetSave:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"filename_prefix": ("STRING", {"default": "models/ComfyUI"}),},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "advanced/model_merging"
DESCRIPTION = "Save a .safetensors containing only the model data."
def save(self, model, filename_prefix, prompt=None, extra_pnginfo=None):
save_checkpoint(model, clip=None, vae=None, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
return {}
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = {}
enable_modelspec = True
if isinstance(model.model, comfy.model_base.SDXL):
if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix):
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit"
else:
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
elif isinstance(model.model, comfy.model_base.SDXLRefiner):
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
elif isinstance(model.model, comfy.model_base.SVD_img2vid):
metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1"
elif isinstance(model.model, comfy.model_base.SD3):
metadata["modelspec.architecture"] = "stable-diffusion-v3-medium" #TODO: other SD3 variants
else:
enable_modelspec = False
if enable_modelspec:
metadata["modelspec.sai_model_spec"] = "1.0.0"
metadata["modelspec.implementation"] = "sgm"
metadata["modelspec.title"] = "{} {}".format(filename, counter)
#TODO:
# "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
# "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
# "v2-inpainting"
extra_keys = {}
model_sampling = model.get_model_object("model_sampling")
if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM):
if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION):
extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float()
extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float()
if model.model.model_type == comfy.model_base.ModelType.EPS:
metadata["modelspec.predict_key"] = "epsilon"
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
metadata["modelspec.predict_key"] = "v"
if not args.disable_metadata:
metadata["prompt"] = prompt_info
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
sd_save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys)
def sd_save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
clip_sd = None
load_models = [model]
if clip is not None:
load_models.append(clip.load_model())
clip_sd = clip.get_sd()
comfy.model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
vae_sd = vae.get_sd() if vae is not None else None #THIS ALLOWS SAVING UNET ONLY
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
for k in extra_keys:
sd[k] = extra_keys[k]
for k in sd:
t = sd[k]
if not t.is_contiguous():
sd[k] = t.contiguous()
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
class TorchCompileModelFluxAdvanced: #adapted from https://github.com/kijai/ComfyUI-KJNodes
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches"
EXPERIMENTAL = True
def parse_blocks(self, blocks_str):
blocks = []
for part in blocks_str.split(','):
part = part.strip()
if '-' in part:
start, end = map(int, part.split('-'))
blocks.extend(range(start, end + 1))
else:
blocks.append(int(part))
return blocks
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic):
single_block_list = self.parse_blocks(single_blocks)
double_block_list = self.parse_blocks(double_blocks)
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.double_blocks):
if i in double_block_list:
#print("Compiling double_block", i)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
for i, block in enumerate(diffusion_model.single_blocks):
if i in single_block_list:
#print("Compiling single block", i)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)