-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbcf.py
449 lines (413 loc) · 15.7 KB
/
bcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import os
import sys
from collections import defaultdict
from functools import reduce
from scipy.spatial.distance import cdist
import numpy as np
import cv2
import sklearn
import sklearn.cluster
import cPickle as pickle
from evolution import evolution
from shape_context import shape_context
from llc import llc_coding_approx
class BCF():
def __init__(self):
self.DATA_DIR = "data/cuauv"
self.PERC_TRAINING_PER_CLASS = 0.5
self.CODEBOOK_FILE = "codebook.data"
self.CLASSIFIER_FILE = "classifier"
self.LABEL_TO_CLASS_MAPPING_FILE = "labels_to_classes.data"
self.classes = defaultdict(list)
self.data = defaultdict(dict)
self.counter = defaultdict(int)
self.kmeans = None
self.clf = None
self.label_to_class_mapping = None
def _load_classes(self):
for dir_name, subdir_list, file_list in os.walk(self.DATA_DIR):
if subdir_list:
continue
for f in sorted(file_list, key=hash):
self.classes[dir_name.split('/')[-1]].append(os.path.join(dir_name, f))
def _load_training(self):
for cls in self.classes:
images = self.classes[cls]
for image in images[:int(len(images) * self.PERC_TRAINING_PER_CLASS)]:
image_id = self._get_image_identifier(cls)
self.data[image_id]['image'] = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
if self.data[image_id]['image'] is None:
print("Failed to load " + image)
def _load_testing(self):
for cls in self.classes:
images = self.classes[cls]
for image in images[int(len(images) * self.PERC_TRAINING_PER_CLASS):]:
image_id = self._get_image_identifier(cls)
self.data[image_id]['image'] = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
if self.data[image_id]['image'] is None:
print("Failed to load " + image)
def _load_single(self, image):
# Load single image data
self.data.clear()
image_id = self._get_image_identifier(None)
self.data[image_id]['image'] = image
def _save_label_to_class_mapping(self):
self.label_to_class_mapping = {hash(cls): cls for cls in self.classes}
with open(self.LABEL_TO_CLASS_MAPPING_FILE, 'wb') as out_file:
pickle.dump(self.label_to_class_mapping, out_file, -1)
def _load_label_to_class_mapping(self):
if self.label_to_class_mapping is None:
with open(self.LABEL_TO_CLASS_MAPPING_FILE, 'rb') as in_file:
self.label_to_class_mapping = pickle.load(in_file)
return self.label_to_class_mapping
def _normalize_shapes(self):
for (cls, idx) in self.data.keys():
image = self.data[(cls, idx)]['image']
# Remove void space
y, x = np.where(image > 50)
max_y = y.max()
min_y = y.min()
max_x = x.max()
min_x = x.min()
trimmed = image[min_y:max_y, min_x:max_x] > 50
trimmed = trimmed.astype('uint8')
trimmed[trimmed > 0] = 255
self.data[(cls, idx)]['normalized_image'] = trimmed
def _extract_cf(self):
for (cls, idx) in self.data.keys():
image = self.data[(cls, idx)]['normalized_image']
contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contour = sorted(contours, key=len)[-1]
mat = np.zeros(image.shape, np.int8)
cv2.drawContours(mat, [contour], -1, (255, 255, 255))
#self.show(mat)
MAX_CURVATURE = 1.5
N_CONTSAMP = 50
N_PNTSAMP = 10
C = None
for pnt in contour:
if C is None:
C = np.array([[pnt[0][0], pnt[0][1]]])
else:
C = np.append(C, [[pnt[0][0], pnt[0][1]]], axis=0)
cfs = self._extr_raw_points(C, MAX_CURVATURE, N_CONTSAMP, N_PNTSAMP)
tmp = mat.copy()
for cf in cfs:
for pnt in cf:
cv2.circle(tmp, (pnt[0], pnt[1]), 2, (255, 0, 0))
#self.show(tmp)
num_cfs = len(cfs)
print("Extracted %s points" % (num_cfs))
feat_sc = np.zeros((300, num_cfs))
xy = np.zeros((num_cfs, 2))
for i in range(num_cfs):
cf = cfs[i]
sc, _, _, _ = shape_context(cf)
# shape context is 60x5 (60 bins at 5 reference points)
sc = sc.flatten(order='F')
sc /= np.sum(sc) # normalize
feat_sc[:, i] = sc
# shape context descriptor sc for each cf is 300x1
# save a point at the midpoint of the contour fragment
xy[i, 0:2] = cf[np.round(len(cf) / 2. - 1).astype('int32'), :]
sz = image.shape
self.data[(cls, idx)]['cfs'] = (cfs, feat_sc, xy, sz)
def _learn_codebook(self):
MAX_CFS = 800 # max number of contour fragments per image; if above, sample randomly
CLUSTERING_CENTERS = 1500
feats_sc = []
for image in self.data.values():
feats = image['cfs']
feat_sc = feats[1]
if feat_sc.shape[1] > MAX_CFS:
# Sample MAX_CFS from contour fragments
rand_indices = np.random.permutation(feat_sc.shape[1])
feat_sc = feat_sc[:, rand_indices[:MAX_CFS]]
feats_sc.append(feat_sc)
feats_sc = np.concatenate(feats_sc, axis=1).transpose()
print("Running KMeans...")
self.kmeans = sklearn.cluster.KMeans(min(CLUSTERING_CENTERS, feats_sc.shape[0]), n_jobs=-1, algorithm='elkan').fit(feats_sc)
print("Saving codebook...")
self._save_kmeans(self.kmeans)
return self.kmeans
def _save_kmeans(self, kmeans):
with open(self.CODEBOOK_FILE, 'wb') as out_file:
pickle.dump(kmeans, out_file, -1)
def _load_kmeans(self):
if self.kmeans is None:
with open(self.CODEBOOK_FILE, 'rb') as in_file:
self.kmeans = pickle.load(in_file)
return self.kmeans
def _encode_cf(self):
K_NN = 5
kmeans = self._load_kmeans()
# Represent each contour fragment shape descriptor as a combination of K_NN of the
# clustering centers
for image in self.data.values():
feat_sc = image['cfs'][1]
image['encoded_shape_descriptors'] = llc_coding_approx(kmeans.cluster_centers_, feat_sc.transpose(), K_NN)
def _spp(self):
PYRAMID = np.array([1, 2, 4])
for image in self.data.values():
feat = image['cfs']
feas = self._pyramid_pooling(PYRAMID, feat[3], feat[2], image['encoded_shape_descriptors'])
fea = feas.flatten()
fea /= np.sqrt(np.sum(fea**2))
image['spp_descriptor'] = fea
def _pyramid_pooling(self, pyramid, sz, xy, encoded_shape_descriptors):
feas = np.zeros((encoded_shape_descriptors.shape[1], np.sum(pyramid**2)))
counter = 0
height = sz[0]
width = sz[1]
x = xy[:, 0] # midpoint for each contour fragment
y = xy[:, 1]
for p in range(len(pyramid)):
for i in range(pyramid[p]):
for j in range(pyramid[p]):
yrang = height * np.array([float(i), float(i+1)]) / pyramid[p]
xrang = width * np.array([float(j), float(j+1)]) / pyramid[p]
c = encoded_shape_descriptors[reduce(np.logical_and, [x >= xrang[0], x < xrang[1], y >= yrang[0], y < yrang[1]])] # get submatrix
if c.shape[0] == 0:
f = np.zeros(encoded_shape_descriptors.shape[1])
else:
f = np.amax(c, axis=0) # max vals in submatrix
feas[:len(f), counter] = f
counter += 1
return feas
def _save_classifier(self, clf):
with open(self.CLASSIFIER_FILE, 'wb') as out_file:
pickle.dump(clf, out_file, -1)
def _load_classifier(self):
if self.clf is None:
with open(self.CLASSIFIER_FILE, 'rb') as in_file:
self.clf = pickle.load(in_file)
return self.clf
def _svm_train(self):
self._save_label_to_class_mapping()
clf = sklearn.svm.LinearSVC(multi_class='crammer_singer')
training_data = []
labels = []
for (cls, idx) in self.data.keys():
training_data.append(self.data[(cls, idx)]['spp_descriptor'])
labels.append(hash(cls))
print("Training SVM...")
self.clf = clf.fit(training_data, labels)
print("Saving classifier...")
self._save_classifier(self.clf)
return self.clf
def _svm_classify_test(self):
clf = self._load_classifier()
label_to_cls = self._load_label_to_class_mapping()
testing_data = []
labels = []
for (cls, idx) in self.data.keys():
testing_data.append(self.data[(cls, idx)]['spp_descriptor'])
labels.append(hash(cls))
predictions = clf.predict(testing_data)
correct = 0
for (i, label) in enumerate(labels):
if predictions[i] == label:
correct += 1
else:
print("Mistook %s for %s" % (label_to_cls[label], label_to_cls[predictions[i]]))
print("Correct: %s out of %s (Accuracy: %.2f%%)" % (correct, len(predictions), 100. * correct / len(predictions)))
def show(self, image):
cv2.imshow('image', image)
_ = cv2.waitKey()
def _extr_raw_points(self, c, max_value, N, nn):
# -------------------------------------------------------
# [SegmentX, SegmentY,NO]=GenSegmentsNew(a,b,maxvalue,nn)
# This function is used to generate all the segments
# vectors of the input contour
# a and b are the input contour sequence
# maxvalue is the stop condition of DCE, usually 1~1.5
# nn is the sample points' number on each segment, in super's method,n=25
# SegmentX,SegmentY denotes all the coordinates of all the segments of input contour
# NO denotes the number of segments of input contour
# -------------------------------------------------------
kp, _, _ = evolution(c, N, max_value, 0, 0, 0) # critical points
n2 = cdist(kp, c)
i_kp = np.argmin(n2.transpose(), axis=0) # column-wise min
n_kp = len(i_kp)
n_cf = (n_kp - 1) * n_kp + 1
pnts = [None] * n_cf
s = 0
for i in range(n_kp):
for j in range(n_kp):
if i == j:
continue
if i < j:
cf = c[i_kp[i]:i_kp[j]+1, :]
if i > j:
cf = np.append(c[i_kp[i]:, :], c[:i_kp[j]+1, :], axis=0)
pnts[s] = self._sample_contour(cf, nn)
s += 1
pnts[s] = self._sample_contour(c, nn)
return pnts
def _sample_contour(self, cf, nn):
# Sample points from contour fragment
_len = cf.shape[0]
ii = np.round(np.arange(0, _len - 0.9999, float(_len - 1) / (nn - 1))).astype('int32')
cf = cf[ii, :]
return cf
def _next_count(self, cls):
self.counter[cls] += 1
return self.counter[cls]
def _get_image_identifier(self, cls):
return (cls, self._next_count(cls))
def _predict(self):
with open(self.CLASSIFIER_FILE, 'rb') as in_file:
clf = pickle.load(in_file)
label_to_cls = self._load_label_to_class_mapping()
testing_data = []
for (cls, idx) in self.data.keys():
testing_data.append(self.data[(cls, idx)]['spp_descriptor'])
predictions = clf.predict(testing_data)
return [label_to_cls[label] for label in predictions]
def classify_single(self, image):
'''
Classifies a single image
Example usage:
mat = cv2.imread("data/cuauv/lightning/lightning-10.jpg", cv2.IMREAD_GRAYSCALE)
print(bcf.classify_single(mat))
'''
self._load_single(image)
self._normalize_shapes()
self._extract_cf()
self._encode_cf()
self._spp()
return self._predict()[0]
def train(self):
self._load_classes()
self._load_training()
self._normalize_shapes()
self._extract_cf()
self._learn_codebook()
self._encode_cf()
self._spp()
self._svm_train()
def test(self):
self._load_classes()
self._load_testing()
self._normalize_shapes()
self._extract_cf()
self._encode_cf()
self._spp()
self._svm_classify_test()
if __name__ == "__main__":
bcf = BCF()
action = "train"
if len(sys.argv) > 1:
action = sys.argv[1]
if action == "train":
print("Training mode")
bcf.train()
elif action == "test":
print("Testing mode")
bcf.test()
elif action == "single":
print("Single classification mode")
mat = cv2.imread(sys.argv[2], cv2.IMREAD_GRAYSCALE)
if mat is None:
print("Failed to load: " + sys.argv[2])
sys.exit(1)
print(bcf.classify_single(mat))
else:
print("Usage: bcf.py [train | test | single <image file>]")
sys.exit(1)
# C = np.array([
# [6.0000, 5.8000],
# [8.4189, 5.8000],
#[10.8378, 5.8000],
#[12.8425, 6.8000],
#[15.2614, 6.8000],
#[17.6803, 6.8000],
#[19.7773, 7.5773],
#[22.1039, 7.8000],
#[24.1086, 6.8000],
#[26.5275, 6.8000],
#[28.9464, 6.8000],
#[30.9511, 7.8000],
#[33.2616, 8.0616],
#[35.3747, 8.8000],
#[37.3794, 9.8000],
#[39.7983, 9.8000],
#[42.1536, 9.6464],
#[43.8640, 7.9360],
#[46.1602, 7.9602],
#[48.2313, 8.8000],
#[50.4597, 9.2597],
#[52.6548, 9.8000],
#[54.6595, 10.8000],
#[57.0555, 10.8555],
#[59.0831, 11.8000],
#[61.0878, 12.8000],
#[63.3583, 13.1583],
#[65.3616, 13.4384],
#[67.1019, 11.8000],
#[69.5208, 11.8000],
#[71.9397, 11.8000],
#[73.9444, 12.8000],
#[75.9640, 13.7640],
#[78.3680, 13.8000],
#[80.3727, 14.8000],
#[82.5597, 15.3597],
#[84.7963, 15.8000],
#[86.8593, 16.6593],
#[89.1555, 16.9555],
#[91.1588, 17.9588],
#[92.2000, 19.9464],
#[93.2000, 21.9511],
#[93.2000, 24.3700],
#[94.2000, 26.3747],
#[94.7611, 28.5611],
#[95.2000, 30.7983],
#[94.0657, 32.2000],
#[91.6468, 32.2000],
#[89.2279, 32.2000],
#[86.8090, 32.2000],
#[84.8616, 31.0616],
#[82.7996, 30.2000],
#[80.5621, 29.7621],
#[78.5587, 28.7587],
#[76.3713, 28.2000],
#[74.3666, 27.2000],
#[73.2000, 28.9209],
#[70.9430, 29.2000],
#[68.6635, 28.8635],
#[66.6602, 27.8602],
#[64.5147, 27.2000],
#[62.5100, 26.2000],
#[60.5053, 25.2000],
#[58.3540, 24.5540],
#[56.4960, 23.2000],
#[54.3474, 22.5474],
#[52.0724, 22.2000],
#[50.0479, 21.2479],
#[48.0445, 20.2445],
#[46.2000, 21.2245],
#[45.6394, 23.2000],
#[43.2205, 23.2000],
#[41.2158, 22.2000],
#[39.2111, 21.2000],
#[37.1460, 20.3460],
#[35.1426, 19.3426],
#[33.1393, 18.3393],
#[30.8431, 18.0431],
#[28.7734, 17.2000],
#[26.7687, 18.2000],
#[24.5403, 17.7403],
#[22.5370, 16.7370],
#[20.7547, 15.2000],
#[18.7500, 14.2000],
#[16.7453, 13.2000],
#[14.7406, 12.2000],
#[12.7359, 11.2000],
#[10.8099, 10.0099],
# [8.7265, 9.2000],
# [6.8033, 8.0033]
# ])
# max_curvature = 1.5
# n_contsamp = 50
# n_pntsamp = 10
# print bcf.extr_raw_points(C, max_curvature, n_contsamp, n_pntsamp)